* Revert "egraphs: disable GVN of effectful idempotent ops (temporarily). (#5808)"
This reverts commit c7e2571866.
* egraphs: fix handling of effectful-but-idempotent ops and GVN.
This PR addresses #5796: currently, ops that are effectful, i.e., remain
in the side-effecting skeleton (which we keep in the `Layout` while the
egraph exists), but are idempotent and thus mergeable by a GVN pass, are
not handled properly.
GVN is still possible on effectful but idempotent ops precisely because
our GVN does not create partial redundancies: it removes an instruction
only when it is dominated by an identical instruction. An isntruction
will not be "hoisted" to a point where it could execute in the optimized
code but not in the original.
However, there are really two parts to the egraph implementation that
produce this effect: the deduplication on insertion into the egraph, and
the elaboration with a scoped hashmap. The deduplication lets us give a
single name (value ID) to all copies of an identical instruction, and
then elaboration will re-create duplicates if GVN should not hoist or
merge some of them.
Because deduplication need not worry about dominance or scopes, we use a
simple (non-scoped) hashmap to dedup/intern ops as "egraph nodes".
When we added support for GVN'ing effectful but idempotent ops (#5594),
we kept the use of this simple dedup'ing hashmap, but these ops do not
get elaborated; instead they stay in the side-effecting skeleton. Thus,
we inadvertently created potential for weird code-motion effects.
The proposal in #5796 would solve this in a clean way by treating these
ops as pure again, and keeping them out of the skeleton, instead putting
"force" pseudo-ops in the skeleton. However, this is a little more
complex than I would like, and I've realized that @jameysharp's earlier
suggestion is much simpler: we can keep an actual scoped hashmap
separately just for the effectful-but-idempotent ops, and use it to GVN
while we build the egraph. In effect, we're fusing a separate GVN pass
with the egraph pass (but letting it interact corecursively with
egraph rewrites. This is in principle similar to how we keep a separate
map for loads and fuse this pass with the egraph rewrite pass as well.
Note that we can use a `ScopedHashMap` here without the "context" (as
needed by `CtxHashMap`) because, as noted by @jameysharp, in practice
the ops we want to GVN have all their args inline. Equality on the
`InstructinoData` itself is conservative: two insts whose struct
contents compare shallowly equal are definitely identical, but identical
insts in a deep-equality sense may not compare shallowly equal, due to
list indirection. This is fine for GVN, because it is still sound to
skip any given GVN opportunity (and keep the original instructions).
Fixes #5796.
* Add comments from review.
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS (locally) with a small install script:
curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.
-
Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.
-
Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation.
Languages supported by the Bytecode Alliance:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders, CMake orwasmtimeConan package - C++ - the
wasmtime-cpprepository or usewasmtime-cppConan package - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository - Ruby - the
wasmtimegem
Languages supported by the community:
- Elixir - the
wasmexhex package
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!
It's Wasmtime.