Commit Graph

117 Commits

Author SHA1 Message Date
Jamey Sharp
3d6d49daba cranelift: Remove of/nof overflow flags from icmp (#4879)
* cranelift: Remove of/nof overflow flags from icmp

Neither Wasmtime nor cg-clif use these flags under any circumstances.
From discussion on #3060 I see it's long been unclear what purpose these
flags served.

Fixes #3060, fixes #4406, and fixes #4875... by deleting all the code
that could have been buggy.

This changes the cranelift-fuzzgen input format by removing some IntCC
options, so I've gone ahead and enabled I128 icmp tests at the same
time. Since only the of/nof cases were failing before, I expect these to
work.

* Restore trapif tests

It's still useful to validate that iadd_ifcout's iflags result can be
forwarded correctly to trapif, and for that purpose it doesn't really
matter what condition code is checked.
2022-09-07 08:38:41 -07:00
Anton Kirilov
d2e19b8d74 Cranelift AArch64: Migrate AMode to ISLE (#4832)
Copyright (c) 2022, Arm Limited.

Co-authored-by: Chris Fallin <chris@cfallin.org>
2022-09-02 00:24:46 +00:00
Chris Fallin
955d4e4ba1 AArch64: port load and store operations to ISLE. (#4785)
This retains `lower_amode` in the handwritten code (@akirilov-arm
reports that there is an upcoming patch to port this), but tweaks it
slightly to take a `Value` rather than an `Inst`.
2022-08-29 17:45:55 -07:00
Damian Heaton
94bcbe8446 Port Fcopysign..FcvtToSintSat to ISLE (AArch64) (#4753)
* Port `Fcopysign`..``FcvtToSintSat` to ISLE (AArch64)

Ported the existing implementations of the following opcodes to ISLE on
AArch64:
- `Fcopysign`
  - Also introduced missing support for `fcopysign` on vector values, as
    per the docs.
  - This introduces the vector encoding for the `SLI` machine
    instruction.
- `FcvtToUint`
- `FcvtToSint`
- `FcvtFromUint`
- `FcvtFromSint`
- `FcvtToUintSat`
- `FcvtToSintSat`

Copyright (c) 2022 Arm Limited

* Document helpers and abstract conversion checks
2022-08-24 10:37:14 -07:00
Damian Heaton
da1fb305a3 Port vconst to ISLE (AArch64) (#4750)
* Port `vconst` to ISLE (AArch64)

Ported the existing implementation of `vconst` to ISLE for AArch64, and
added support for 64-bit vector constants.

Also introduced 64-bit `vconst` support to the interpreter.

Copyright (c) 2022 Arm Limited

* Replace if-chains with match statements

Copyright (c) 2022 Arm Limited
2022-08-23 09:40:11 -07:00
Afonso Bordado
863cbc345c cranelift: Fix icmp.i128 eq for aarch64 (#4706)
* cranelift: Fix `icmp.i128 eq` for aarch64

* cranelift: Use ccmp in `icmp.i128 eq` for aarch64
2022-08-15 11:11:22 -07:00
Nick Fitzgerald
532fb22af6 Cranelift: Remove the LowerCtx trait (#4697)
The trait had only one implementation: the `Lower` struct. It is easier to just
use that directly, and not introduce unnecessary layers of generics and
abstractions.

Once upon a time, there was hope that we would have other implementations of the
`LowerCtx` trait, that did things like lower CLIF to SMTLIB for
verification. However, this is not practical these days given the way that the
trait has evolved over time, and our verification efforts are focused on ISLE
now anyways, and we're actually making some progress on that front (much more
than anyone ever did on a second `LowerCtx` trait implementation!)
2022-08-11 16:54:17 -07:00
Afonso Bordado
709716bb8e cranelift: Implement scalar FMA on x86 (#4460)
x86 does not have dedicated instructions for scalar FMA, lower
to a libcall which seems to be what llvm does.
2022-08-03 10:29:10 -07:00
Benjamin Bouvier
8d0224341c cranelift: Introduce a feature to enable trace logs (#4484)
* Don't use `log::trace` directly but a feature-enabled `trace` macro
* Don't emit disassembly based on the log level
2022-08-01 11:19:15 +02:00
Afonso Bordado
e9727b9d4b aarch64: Fix i128 of/nof implementations (#4403)
@yuyang-ok reported via zulip that i128 overflow tests were:
1. different from the interpreter implementation
2. wrong on some of the test cases

This fixes both the tests and the aarch64 implementation and adds the
interpreter to the testsuite.
2022-07-07 11:00:58 -07:00
Sam Parker
fb61774df2 [AArch64] Port AtomicLoad and AtomicStore to ISLE (#4301)
Copyright (c) 2022, Arm Limited.
2022-06-29 12:12:48 -07:00
Chris Fallin
e4b7c8a737 Cranelift: fix #3953: rework single/multiple-use logic in lowering. (#4061)
* Cranelift: fix #3953: rework single/multiple-use logic in lowering.

This PR addresses the longstanding issue with loads trying to merge
into compares on x86-64, and more generally, with the lowering
framework falsely recognizing "single uses" of one op by
another (which would normally allow merging of side-effecting ops like
loads) when there is *indirect* duplication.

To fix this, we replace the direct `value_uses` count with a
transitive notion of uniqueness (not unlike Rust's `&`/`&mut` and how
a `&mut` downgrades to `&` when accessed through another `&`!). A
value is used multiple times transitively if it has multiple direct
uses, or is used by another op that is used multiple times
transitively.

The canonical example of badness is:

```
    v1 := load
    v2 := ifcmp v1, ...
    v3 := selectif v2, ...
    v4 := selectif v2, ...
```

both `v3` and `v4` effectively merge the `ifcmp` (`v2`), so even
though the use of `v1` is "unique", it is codegenned twice. This is
why we ~~can't have nice things~~ can't merge loads into
compares (#3953).

There is quite a subtle and interesting design space around this
problem and how we might solve it. See the long doc-comment on
`ValueUseState` in this PR for more justification for the particular
design here. In particular, this design deliberately simplifies a bit
relative to an "optimal" solution: some uses can *become* unique
depending on merging, but we don't design our data structures for such
updates because that would require significant extra costly
tracking (some sort of transitive refcounting). For example, in the
above, if `selectif` somehow did not merge `ifcmp`, then we would only
codegen the `ifcmp` once into its result register (and use that
register twice); then the load *is* uniquely used, and could be
merged. But that requires transitioning from "multiple use" back to
"unique use" with careful tracking as we do pattern-matching, which
I've chosen to make out-of-scope here for now. In practice, I don't
think it will matter too much (and we can always improve later).

With this PR, we can now re-enable load-op merging for compares. A
subsequent commit does this.

* Update x64 backend to allow load-op merging for `cmp`.

* Update filetests.

* Add test for cmp-mem merging on x64.

* Comment fixes.

* Rework ValueUseState analysis for better performance.

* Update s390x filetest: iadd_ifcout cannot merge loads anymore because it has multiple outputs (ValueUseState limitation)

* Address review comments.
2022-04-22 18:00:48 -07:00
Sam Parker
cf533a8041 [AArch64] Merge Fcmp32 and Fcmp64 (#4032)
Copyright (c) 2022, Arm Limited.
2022-04-14 15:39:43 -07:00
Chris Fallin
a0318f36f0 Switch Cranelift over to regalloc2. (#3989)
This PR switches Cranelift over to the new register allocator, regalloc2.

See [this document](https://gist.github.com/cfallin/08553421a91f150254fe878f67301801)
for a summary of the design changes. This switchover has implications for
core VCode/MachInst types and the lowering pass.

Overall, this change brings improvements to both compile time and speed of
generated code (runtime), as reported in #3942:

```
Benchmark       Compilation (wallclock)     Execution (wallclock)
blake3-scalar   25% faster                  28% faster
blake3-simd     no diff                     no diff
meshoptimizer   19% faster                  17% faster
pulldown-cmark  17% faster                  no diff
bz2             15% faster                  no diff
SpiderMonkey,   21% faster                  2% faster
  fib(30)
clang.wasm      42% faster                  N/A
```
2022-04-14 10:28:21 -07:00
Andrew Brown
bd6fe11ca9 cranelift: remove load_complex and store_complex (#3976)
This change removes all variants of `load*_complex` and `store*_complex`
from Cranelift; this is a breaking change to the instructions exposed by
CLIF. The complete list of instructions removed is: `load_complex`,
`store_complex`, `uload8_complex`, `sload8_complex`, `istore8_complex`,
`sload8_complex`, `uload16_complex`, `sload16_complex`,
`istore16_complex`, `uload32_complex`, `sload32_complex`,
`istore32_complex`, `uload8x8_complex`, `sload8x8_complex`,
`sload16x4_complex`, `uload16x4_complex`, `uload32x2_complex`,
`sload32x2_complex`.

The rationale for this removal is that the Cranelift backend now has the
ability to pattern-match multiple upstream additions in order to
calculate the address to access. Previously, this was not possible so
the `*_complex` instructions were needed. Over time, these instructions
have fallen out of use in this repository, making the additional
overhead of maintaining them a chore.
2022-03-31 10:05:10 -07:00
Sam Parker
e572198f85 [AArch64] Merge 32- and 64-bit ALUOps (#3802)
Combine the two opcodes into one and pass and add an OperandSize
field to these instructions, as well as an ISLE helper to perform
the conversion from Type.

This saves us from having having to write ISLE helpers to select the
correct opcode, based on type, and reduces the amount of code needed
for emission.

Copyright (c) 2022, Arm Limited.
2022-02-17 10:03:54 -08:00
Alex Crichton
72e2b7fe80 aarch64: Migrate bitrev/clz/cls/ctz to ISLE (#3658)
This commit migrates these existing instructions to ISLE from the manual
lowerings implemented today. This was mostly straightforward but while I
was at it I fixed what appeared to be broken translations for I{8,16}
for `clz`, `cls`, and `ctz`. Previously the lowerings would produce
results as-if the input was 32-bits, but now I believe they all
correctly account for the bit-width.
2022-01-06 15:18:32 -06:00
Alex Crichton
e94ebc2263 aarch64: Translate rot{r,l} to ISLE (#3614)
This commit translates the `rotl` and `rotr` lowerings already existing
to ISLE. The port was relatively straightforward with the biggest
changing being the instructions generated around i128 rotl/rotr
primarily due to register changes.
2021-12-17 12:37:17 -06:00
Alex Crichton
d8974ce6bc aarch64: Migrate ishl/ushr/sshr to ISLE (#3608)
* aarch64: Migrate ishl/ushr/sshr to ISLE

This commit migrates the `ishl`, `ushr`, and `sshr` instructions to
ISLE. These involve special cases for almost all types of integers
(including vectors) and helper functions for the i128 lowerings since
the i128 lowerings look to be used for other instructions as well. This
doesn't delete the i128 lowerings in the Rust code just yet because
they're still used by Rust lowerings, but they should be deletable in
due time once those lowerings are translated to ISLE.

* Use more descriptive names for i128 lowerings

* Use a with_flags-lookalike for csel

* Use existing `with_flags_*`

* Coment backwards order

* Update generated code
2021-12-16 17:37:53 -06:00
Alex Crichton
4236319a53 aarch64: Migrate some bit-ops to ISLE (#3602)
* aarch64: Migrate some bit-ops to ISLE

This commit migrates these instructions to ISLE:

* `bnot`
* `band`
* `bor`
* `bxor`
* `band_not`
* `bor_not`
* `bxor_not`

The translations were relatively straightforward but the interesting
part here was trying to reduce the duplication between all these
instructions. I opted for a route that's similar to what the lowering
does today, having a `decl` which takes the `ALUOp` and then performs
further pattern matching internally. This enabled each instruction's
lowering to be pretty simple while we still get to handle all the fancy
cases of shifts, constants, etc, for each instruction.

* Actually delete previous lowerings

* Remove dead code
2021-12-15 10:41:36 -06:00
Alex Crichton
d89410ec4e aarch64: Migrate uextend/sextend to ISLE
This commit migrates the sign/zero extension instructions from
`lower_inst.rs` to ISLE. There's actually a fair amount going on in this
migration since a few other pieces needed touching up along the way as
well:

* First is the actual migration of `uextend` and `sextend`. These
  instructions are relatively simple but end up having a number of special
  cases. I've attempted to replicate all the cases here but
  double-checks would be good.

* This commit actually fixes a few issues where if the result of a vector
  extraction is sign/zero-extended into i128 that actually results in
  panics in the current backend.

* This commit adds exhaustive testing for
  extension-of-a-vector-extraction is a noop wrt extraction.

* A bugfix around ISLE glue was required to get this commit working,
  notably the case where the `RegMapper` implementation was trying to
  map an input to an output (meaning ISLE was passing through an input
  unmodified to the output) wasn't working. This requires a `mov`
  instruction to be generated and this commit updates the glue to do
  this. At the same time this commit updates the ISLE glue to share more
  infrastructure between x64 and aarch64 so both backends get this fix
  instead of just aarch64.

Overall I think that the translation to ISLE was a net benefit for these
instructions. It's relatively obvious what all the cases are now unlike
before where it took a few reads of the code and some boolean switches
to figure out which path was taken for each flavor of input. I think
there's still possible improvements here where, for example, the
`put_in_reg_{s,z}ext64` helper doesn't use this logic so technically
those helpers could also pattern match the "well atomic loads and vector
extractions automatically do this for us" but that's a possible future
improvement for later (and shouldn't be too too hard with some ISLE
refactoring).
2021-12-14 07:01:37 -08:00
Alex Crichton
33dba07e6b aarch64: Migrate imul to ISLE
This commit migrates the `imul` clif instruction lowering for AArch64 to
ISLE. This is a relatively complicated instruction with lots of special
cases due to the simd proposal for wasm. Like x64, however, the special
casing lends itself to ISLE quite well and the lowerings here in theory
are pretty straightforward.

The main gotcha of this commit is that this encounters a unique
situation which hasn't been encountered yet with other lowerings, namely
the `Umlal32` instruction used in the implementation of `i64x2.mul` is
unique in the `VecRRRLongOp` class of instructions in that it both reads
and writes the destination register (`use_mod` instead of simply
`use_def`). This meant that I needed to add another helper in ISLe for
creating a `vec_rrrr_long` instruction (despite this enum variant not
actually existing) which implicitly moves the first operand into the
destination before issuing the actual `VecRRRLong` instruction.
2021-11-29 16:05:57 -08:00
Alex Crichton
7d0f6ab90f aarch64: Migrate iadd and isub to ISLE
This commit is the first "meaty" instruction added to ISLE for the
AArch64 backend. I chose to pick the first two in the current lowering's
`match` statement, `isub` and `iadd`. These two turned out to be
particularly interesting for a few reasons:

* Both had clearly migratable-to-ISLE behavior along the lines of
  special-casing per type. For example 128-bit and vector arithmetic
  were both easily translateable.

* The `iadd` instruction has special cases for fusing with a
  multiplication to generate `madd` which is expressed pretty easily in
  ISLE.

* Otherwise both instructions had a number of forms where they attempted
  to interpret the RHS as various forms of constants, extends, or
  shifts. There's a bit of a design space of how best to represent this
  in ISLE and what I settled on was to have a special case for each form
  of instruction, and the special cases are somewhat duplicated between
  `iadd` and `isub`. There's custom "extractors" for the special cases
  and instructions that support these special cases will have an
  `rule`-per-case.

Overall I think the ISLE transitioned pretty well. I don't think that
the aarch64 backend is going to follow the x64 backend super closely,
though. For example the x64 backend is having a helper-per-instruction
at the moment but with AArch64 it seems to make more sense to only have
a helper-per-enum-variant-of-`MInst`. This is because the same
instruction (e.g. `ALUOp::Sub32`) can be expressed with multiple
different forms depending on the payload.

It's worth noting that the ISLE looks like it's a good deal larger than
the code actually being removed from lowering as part of this commit. I
think this is deceptive though because a lot of the logic in
`put_input_in_rse_imm12_maybe_negated` and `alu_inst_imm12` is being
inlined into the ISLE definitions for each instruction instead of having
it all packed into the helper functions. Some of the "boilerplate" here
is the addition of various ISLE utilities as well.
2021-11-19 06:51:38 -08:00
Alex Crichton
1141169ff8 aarch64: Initial work to transition backend to ISLE (#3541)
* aarch64: Initial work to transition backend to ISLE

This commit is what is hoped to be the initial commit towards migrating
the aarch64 backend to ISLE. There's seemingly a lot of changes here but
it's intended to largely be code motion. The current thinking is to
closely follow the x64 backend for how all this is handled and
organized.

Major changes in this PR are:

* The `Inst` enum is now defined in ISLE. This avoids having to define
  it in two places (once in Rust and once in ISLE). I've preserved all
  the comments in the ISLE and otherwise this isn't actually a
  functional change from the Rust perspective, it's still the same enum
  according to Rust.

* Lots of little enums and things were moved to ISLE as well. As with
  `Inst` their definitions didn't change, only where they're defined.
  This will give future ISLE PRs access to all these operations.

* Initial code for lowering `iconst`, `null`, and `bconst` are
  implemented. Ironically none of this is actually used right now
  because constant lowering is handled in `put_input_in_regs` which
  specially handles constants. Nonetheless I wanted to get at least
  something simple working which shows off how to special case various
  things that are specific to AArch64. In a future PR I plan to hook up
  const-lowering in ISLE to this path so even though
  `iconst`-the-clif-instruction is never lowered this should use the
  const lowering defined in ISLE rather than elsewhere in the backend
  (eventually leading to the deletion of the non-ISLE lowering).

* The `IsleContext` skeleton is created and set up for future additions.

* Some code for ISLE that's shared across all backends now lives in
  `isle_prelude_methods!()` and is deduplicated between the AArch64
  backend and the x64 backend.

* Register mapping is tweaked to do the same thing for AArch64 that it
  does for x64. Namely mapping virtual registers is supported instead of
  just virtual to machine registers.

My main goal with this PR was to get AArch64 into a place where new
instructions can be added with relative ease. Additionally I'm hoping to
figure out as part of this change how much to share for ISLE between
AArch64 and x64 (and other backends).

* Don't use priorities with rules

* Update .gitattributes with concise syntax

* Deduplicate some type definitions

* Rebuild ISLE

* Move isa::isle to machinst::isle
2021-11-18 10:38:16 -06:00
Benjamin Bouvier
43a86f14d5 Remove more old backend ISA concepts (#3402)
This also paves the way for unifying TargetIsa and MachBackend, since now they map one to one. In theory the two traits could be merged, which would be nice to limit the number of total concepts. Also they have quite different responsibilities, so it might be fine to keep them separate.

Interestingly, this PR started as removing RegInfo from the TargetIsa trait since the adapter returned a dummy value there. From the fallout, noticed that all Display implementations didn't needed an ISA anymore (since these were only used to render ISA specific registers). Also the whole family of RegInfo / ValueLoc / RegUnit was exclusively used for the old backend, and these could be removed. Notably, some IR instructions needed to be removed, because they were using RegUnit too: this was the oddball of regfill / regmove / regspill / copy_special, which were IR instructions inserted by the old regalloc. Fare thee well!
2021-10-04 10:36:12 +02:00
Anton Kirilov
8805e25042 Cranelift AArch64: Improve the type checks for IR operations
There were cases where the AArch64 backend assumed that an IR
operation would always operate on certain types (the most likely
reason being that the corresponding WebAssembly instruction did
not cover anything else), even though the definition of the IR
operation imposed no constraints like that.

Copyright (c) 2021, Arm Limited.
2021-09-13 14:46:45 +01:00
Anton Kirilov
a1b39276e1 Enable more CLIF tests on AArch64
The tests for the SIMD floating-point maximum and minimum operations
require particular care because the handling of the NaN values is
non-deterministic and may vary between platforms. There is no way to
match several NaN values in a test, so the solution is to extract the
non-deterministic test cases into a separate file that is subsequently
replicated for every backend under test, with adjustments made to the
expected results.

Copyright (c) 2021, Arm Limited.
2021-08-17 13:27:58 +01:00
Sam Parker
b6f6ac116a Revert IR changes
Along with the x64 and s390x changes. Now pattern matching the
uextend(atomic_load) in the aarch64 backend.
2021-08-05 09:35:32 +01:00
Sam Parker
5eb2dca9f1 Added doc comment
And removed an accidental code move.

Copyright (c) 2021, Arm Limited.
2021-07-28 13:14:20 +01:00
Sam Parker
f2806a9192 rebase and ran cargo fmt
Copyright (c) 2021, Arm Limited.
2021-07-28 13:14:20 +01:00
Sam Parker
541a4ee428 Enable simd_extmul_* for AArch64
Lower simd_extmul_[low/high][signed/unsigned] to [s|u]widen inputs to
an imul node.

Copyright (c) 2021, Arm Limited.
2021-07-28 13:14:20 +01:00
Nick Fitzgerald
4283d2116d cranelift: Move most debug-level logs to the trace level
Cranelift crates have historically been much more verbose with debug-level
logging than most other crates in the Rust ecosystem. We log things like how
many parameters a basic block has, the color of virtual registers during
regalloc, etc. Even for Cranelift hackers, these things are largely only useful
when hacking specifically on Cranelift and looking at a particular test case,
not even when using some Cranelift embedding (such as Wasmtime).

Most of the time, when people want logging for their Rust programs, they do
something like:

    RUST_LOG=debug cargo run

This means that they get all that mostly not useful debug logging out of
Cranelift. So they might want to disable logging for Cranelift, or change it to
a higher log level:

    RUST_LOG=debug,cranelift=info cargo run

The problem is that this is already more annoying to type that `RUST_LOG=debug`,
and that Cranelift isn't one single crate, so you actually have to play
whack-a-mole with naming all the Cranelift crates off the top of your head,
something more like this:

    RUST_LOG=debug,cranelift=info,cranelift_codegen=info,cranelift_wasm=info,...

Therefore, we're changing most of the `debug!` logs into `trace!` logs: anything
that is very Cranelift-internal, unlikely to be useful/meaningful to the
"average" Cranelift embedder, or prints a message for each instruction visited
during a pass. On the other hand, things that just report a one line statistic
for a whole pass, for example, are left as `debug!`. The more verbose the log
messages are, the higher the bar they must clear to be `debug!` rather than
`trace!`.
2021-07-26 11:50:16 -07:00
Afonso Bordado
3a38400447 aarch64: Refactor lower_icmp to use a single materialize_bool_result 2021-07-19 09:31:14 -07:00
Afonso Bordado
14d1c7ee9f aarch64: Refactor lower_icmp to allow returning a different flag 2021-07-19 09:31:14 -07:00
Afonso Bordado
e628fb376f aarch64: Fix incorrect code generation for overflow icmp in i16 values 2021-07-19 09:31:14 -07:00
Afonso Bordado
db5566dadb aarch64: Fix lowering amounts for shifts
This commit addresses two issues:
* A panic when shifting any non i128 type by i128 amounts (#3064)
* Wrong results when lowering shifts with small types (i8, i16)

In these types when shifting for amounts larger than the size of the
type, we would not get the wrapping behaviour that we see on i32 and i64.
This is because in these larger types, the wrapping behaviour is automatically
implemented by using the appropriate instruction, however we do not
have i8 and i16 specific instructions, so we have to manually wrap
the shift amount with an AND instruction.

This issue is also found on x86_64 and s390x, and a separate issue will
be filed for those.

Closes #3064
2021-07-16 22:08:02 +01:00
Afonso Bordado
eebae8d4c8 aarch64: Fix incorrect encoding of large const values in icmp.
When encoding constants as immediates into an RSE Imm12 instruction we need to take special care to check if the value that we are trying to input does not overflow its type when viewed as a signed value. (i.e. iconst.i8 200)

We cannot both put an immediate and sign extend it, so we need to lower it into a separate reg, and emit the sign extend into the instruction.

For more details see the [cg_clif bug report](https://github.com/bjorn3/rustc_codegen_cranelift/issues/1184#issuecomment-873214796).
2021-07-03 22:42:15 +01:00
Chris Fallin
18cd2f681c Merge pull request #3002 from afonso360/aarch64-i128-br
aarch64 implement brz,brnz,br_icmp for i128 values
2021-06-21 10:52:50 -07:00
Afonso Bordado
45faace329 aarch64: Implement i128 br_icmp
The previous commit deduplicated the icmp impl, so we reuse that
but make modifications where we don't need to set the results.
2021-06-19 22:01:33 +01:00
Afonso Bordado
b5708b4386 aarch64: Deduplicate lowering icmp
Lowering icmp was duplicated across callers that only cared about
flags, and callers that only cared about the bool result.

Merge both callers into `lower_icmp` which does the correct thing
depending on a new IcmpOutput parameter.
2021-06-19 08:32:37 +01:00
Chris Fallin
de1edd4976 Merge pull request #2985 from afonso360/aarch64-i128-load-store
aarch64: Implement I128 Loads and Stores
2021-06-17 08:23:15 -07:00
Afonso Bordado
c82764605f aarch64: Add i128 load & store tests and refactor address calculation
The previous address calculation code had a bug where we tried to
add offsets into a temporary register before defining it, causing
the regalloc to complain.
2021-06-17 15:50:08 +01:00
Afonso Bordado
9fc89d2316 aarch64: Add bitrev,clz,cls,ctz for i128 values 2021-06-16 10:44:10 +01:00
Afonso Bordado
1c05e06bd5 aarch64: Implement I128 Loads and Stores 2021-06-14 21:56:53 +01:00
Afonso Bordado
b1475f32a6 aarch64: Add ishl,ushr,sshr for i128 values 2021-06-09 22:48:14 +01:00
Afonso Bordado
fbcfffdeab Handle spilling i128 arguments into the stack in aarch64 2021-05-21 17:05:41 +01:00
Afonso Bordado
ac624da8d9 Handle i128 arguments in the aarch64 ABI
When dealing with params that need to be split, we follow the
arch64 ABI and split the value in two, and make sure that start that
argument in an even numbered xN register.

The apple ABI does not require this, so on those platforms, we start
params anywhere.
2021-05-12 13:06:13 +01:00
Anton Kirilov
07c27039b1 Cranelift AArch64: Add initial support for the Armv8.1 atomics
This commit enables Cranelift's AArch64 backend to generate code
for instruction set extensions (previously only the base Armv8-A
architecture was supported); also, it makes it possible to detect
the extensions supported by the host when JIT compiling. The new
functionality is applied to the IR instruction `AtomicCas`.

Copyright (c) 2021, Arm Limited.
2021-03-13 02:31:51 +00:00
Chris Fallin
456561f431 x64 and aarch64: allow StructArgument and StructReturn args.
The StructReturn ABI is fairly simple at the codegen/isel level: we only
need to take care to return the sret pointer as one of the return values
if that wasn't specified in the initial function signature.

Struct arguments are a little more complex. A struct argument is stored
as a chunk of memory in the stack-args space. However, the CLIF
semantics are slightly special: on the caller side, the parameter passed
in is a pointer to an arbitrary memory block, and we must memcpy this
data to the on-stack struct-argument; and on the callee side, we provide
a pointer to the passed-in struct-argument as the CLIF block param
value.

This is necessary to support various ABIs other than Wasm, such as that
of Rust (with the cg_clif codegen backend).
2021-01-17 23:11:45 -08:00
Chris Fallin
6eea015d6c Multi-register value support: framework for Values wider than machine regs.
This will allow for support for `I128` values everywhere, and `I64`
values on 32-bit targets (e.g., ARM32 and x86-32). It does not alter the
machine backends to build such support; it just adds the framework for
the MachInst backends to *reason* about a `Value` residing in more than
one register.
2021-01-05 17:45:02 -08:00