When dealing with params that need to be split, we follow the arch64 ABI and split the value in two, and make sure that start that argument in an even numbered xN register. The apple ABI does not require this, so on those platforms, we start params anywhere.
1287 lines
43 KiB
Rust
1287 lines
43 KiB
Rust
//! Lowering rules for AArch64.
|
|
//!
|
|
//! TODO: opportunities for better code generation:
|
|
//!
|
|
//! - Smarter use of addressing modes. Recognize a+SCALE*b patterns. Recognize
|
|
//! pre/post-index opportunities.
|
|
//!
|
|
//! - Floating-point immediates (FIMM instruction).
|
|
|
|
use crate::ir::condcodes::{FloatCC, IntCC};
|
|
use crate::ir::types::*;
|
|
use crate::ir::Inst as IRInst;
|
|
use crate::ir::{Opcode, Type};
|
|
use crate::machinst::lower::*;
|
|
use crate::machinst::*;
|
|
use crate::CodegenResult;
|
|
|
|
use crate::isa::aarch64::inst::*;
|
|
use crate::isa::aarch64::AArch64Backend;
|
|
|
|
use super::lower_inst;
|
|
|
|
use crate::data_value::DataValue;
|
|
use log::{debug, trace};
|
|
use regalloc::{Reg, Writable};
|
|
use smallvec::SmallVec;
|
|
|
|
//============================================================================
|
|
// Result enum types.
|
|
//
|
|
// Lowering of a given value results in one of these enums, depending on the
|
|
// modes in which we can accept the value.
|
|
|
|
/// A lowering result: register, register-shift. An SSA value can always be
|
|
/// lowered into one of these options; the register form is the fallback.
|
|
#[derive(Clone, Debug)]
|
|
enum ResultRS {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
}
|
|
|
|
/// A lowering result: register, register-shift, register-extend. An SSA value can always be
|
|
/// lowered into one of these options; the register form is the fallback.
|
|
#[derive(Clone, Debug)]
|
|
enum ResultRSE {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
RegExtend(Reg, ExtendOp),
|
|
}
|
|
|
|
impl ResultRSE {
|
|
fn from_rs(rs: ResultRS) -> ResultRSE {
|
|
match rs {
|
|
ResultRS::Reg(r) => ResultRSE::Reg(r),
|
|
ResultRS::RegShift(r, s) => ResultRSE::RegShift(r, s),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A lowering result: register, register-shift, register-extend, or 12-bit immediate form.
|
|
/// An SSA value can always be lowered into one of these options; the register form is the
|
|
/// fallback.
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) enum ResultRSEImm12 {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
RegExtend(Reg, ExtendOp),
|
|
Imm12(Imm12),
|
|
}
|
|
|
|
impl ResultRSEImm12 {
|
|
fn from_rse(rse: ResultRSE) -> ResultRSEImm12 {
|
|
match rse {
|
|
ResultRSE::Reg(r) => ResultRSEImm12::Reg(r),
|
|
ResultRSE::RegShift(r, s) => ResultRSEImm12::RegShift(r, s),
|
|
ResultRSE::RegExtend(r, e) => ResultRSEImm12::RegExtend(r, e),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A lowering result: register, register-shift, or logical immediate form.
|
|
/// An SSA value can always be lowered into one of these options; the register form is the
|
|
/// fallback.
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) enum ResultRSImmLogic {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
ImmLogic(ImmLogic),
|
|
}
|
|
|
|
impl ResultRSImmLogic {
|
|
fn from_rs(rse: ResultRS) -> ResultRSImmLogic {
|
|
match rse {
|
|
ResultRS::Reg(r) => ResultRSImmLogic::Reg(r),
|
|
ResultRS::RegShift(r, s) => ResultRSImmLogic::RegShift(r, s),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A lowering result: register or immediate shift amount (arg to a shift op).
|
|
/// An SSA value can always be lowered into one of these options; the register form is the
|
|
/// fallback.
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) enum ResultRegImmShift {
|
|
Reg(Reg),
|
|
ImmShift(ImmShift),
|
|
}
|
|
|
|
//============================================================================
|
|
// Lowering: convert instruction inputs to forms that we can use.
|
|
|
|
/// Lower an instruction input to a 64-bit constant, if possible.
|
|
pub(crate) fn input_to_const<C: LowerCtx<I = Inst>>(ctx: &mut C, input: InsnInput) -> Option<u64> {
|
|
let input = ctx.get_input_as_source_or_const(input.insn, input.input);
|
|
input.constant
|
|
}
|
|
|
|
/// Lower an instruction input to a constant register-shift amount, if possible.
|
|
pub(crate) fn input_to_shiftimm<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
) -> Option<ShiftOpShiftImm> {
|
|
input_to_const(ctx, input).and_then(ShiftOpShiftImm::maybe_from_shift)
|
|
}
|
|
|
|
pub(crate) fn const_param_to_u128<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
inst: IRInst,
|
|
) -> Option<u128> {
|
|
match ctx.get_immediate(inst) {
|
|
Some(DataValue::V128(bytes)) => Some(u128::from_le_bytes(bytes)),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// How to handle narrow values loaded into registers; see note on `narrow_mode`
|
|
/// parameter to `put_input_in_*` below.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub(crate) enum NarrowValueMode {
|
|
None,
|
|
/// Zero-extend to 32 bits if original is < 32 bits.
|
|
ZeroExtend32,
|
|
/// Sign-extend to 32 bits if original is < 32 bits.
|
|
SignExtend32,
|
|
/// Zero-extend to 64 bits if original is < 64 bits.
|
|
ZeroExtend64,
|
|
/// Sign-extend to 64 bits if original is < 64 bits.
|
|
SignExtend64,
|
|
}
|
|
|
|
impl NarrowValueMode {
|
|
fn is_32bit(&self) -> bool {
|
|
match self {
|
|
NarrowValueMode::None => false,
|
|
NarrowValueMode::ZeroExtend32 | NarrowValueMode::SignExtend32 => true,
|
|
NarrowValueMode::ZeroExtend64 | NarrowValueMode::SignExtend64 => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emits instruction(s) to generate the given 64-bit constant value into a newly-allocated
|
|
/// temporary register, returning that register.
|
|
fn generate_constant<C: LowerCtx<I = Inst>>(ctx: &mut C, ty: Type, c: u64) -> ValueRegs<Reg> {
|
|
let from_bits = ty_bits(ty);
|
|
let masked = if from_bits < 64 {
|
|
c & ((1u64 << from_bits) - 1)
|
|
} else {
|
|
c
|
|
};
|
|
|
|
let cst_copy = ctx.alloc_tmp(ty);
|
|
for inst in Inst::gen_constant(cst_copy, masked as u128, ty, |ty| {
|
|
ctx.alloc_tmp(ty).only_reg().unwrap()
|
|
})
|
|
.into_iter()
|
|
{
|
|
ctx.emit(inst);
|
|
}
|
|
non_writable_value_regs(cst_copy)
|
|
}
|
|
|
|
/// Extends a register according to `narrow_mode`.
|
|
/// If extended, the value is always extended to 64 bits, for simplicity.
|
|
fn narrow_reg<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
ty: Type,
|
|
in_reg: Reg,
|
|
is_const: bool,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> Reg {
|
|
let from_bits = ty_bits(ty) as u8;
|
|
match (narrow_mode, from_bits) {
|
|
(NarrowValueMode::None, _) => in_reg,
|
|
(NarrowValueMode::ZeroExtend32, n) if n < 32 => {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: false,
|
|
from_bits,
|
|
to_bits: 32,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
(NarrowValueMode::SignExtend32, n) if n < 32 => {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: true,
|
|
from_bits,
|
|
to_bits: 32,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 32) | (NarrowValueMode::SignExtend32, 32) => in_reg,
|
|
|
|
(NarrowValueMode::ZeroExtend64, n) if n < 64 => {
|
|
if is_const {
|
|
// Constants are zero-extended to full 64-bit width on load already.
|
|
in_reg
|
|
} else {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: false,
|
|
from_bits,
|
|
to_bits: 64,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
}
|
|
(NarrowValueMode::SignExtend64, n) if n < 64 => {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: true,
|
|
from_bits,
|
|
to_bits: 64,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
(_, 64) => in_reg,
|
|
(_, 128) => in_reg,
|
|
|
|
_ => panic!(
|
|
"Unsupported input width: input ty {} bits {} mode {:?}",
|
|
ty, from_bits, narrow_mode
|
|
),
|
|
}
|
|
}
|
|
|
|
/// Lower an instruction input to a register
|
|
///
|
|
/// The given register will be extended appropriately, according to
|
|
/// `narrow_mode` and the input's type. If extended, the value is
|
|
/// always extended to 64 bits, for simplicity.
|
|
pub(crate) fn put_input_in_reg<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> Reg {
|
|
let reg = put_input_in_regs(ctx, input)
|
|
.only_reg()
|
|
.expect("Multi-register value not expected");
|
|
|
|
let is_const = ctx
|
|
.get_input_as_source_or_const(input.insn, input.input)
|
|
.constant
|
|
.is_some();
|
|
|
|
let ty = ctx.input_ty(input.insn, input.input);
|
|
narrow_reg(ctx, ty, reg, is_const, narrow_mode)
|
|
}
|
|
|
|
/// Lower an instruction input to multiple regs
|
|
pub(crate) fn put_input_in_regs<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
) -> ValueRegs<Reg> {
|
|
debug!("put_input_in_reg: input {:?}", input);
|
|
let ty = ctx.input_ty(input.insn, input.input);
|
|
let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
|
|
|
|
let in_regs = if let Some(c) = inputs.constant {
|
|
// Generate constants fresh at each use to minimize long-range register pressure.
|
|
generate_constant(ctx, ty, c)
|
|
} else {
|
|
ctx.put_input_in_regs(input.insn, input.input)
|
|
};
|
|
|
|
in_regs
|
|
}
|
|
|
|
/// Lower an instruction input to a reg or reg/shift, or reg/extend operand.
|
|
///
|
|
/// The `narrow_mode` flag indicates whether the consumer of this value needs
|
|
/// the high bits clear. For many operations, such as an add/sub/mul or any
|
|
/// bitwise logical operation, the low-bit results depend only on the low-bit
|
|
/// inputs, so e.g. we can do an 8 bit add on 32 bit registers where the 8-bit
|
|
/// value is stored in the low 8 bits of the register and the high 24 bits are
|
|
/// undefined. If the op truly needs the high N bits clear (such as for a
|
|
/// divide or a right-shift or a compare-to-zero), `narrow_mode` should be
|
|
/// set to `ZeroExtend` or `SignExtend` as appropriate, and the resulting
|
|
/// register will be provided the extended value.
|
|
fn put_input_in_rs<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRS {
|
|
let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
|
|
if let Some((insn, 0)) = inputs.inst {
|
|
let op = ctx.data(insn).opcode();
|
|
|
|
if op == Opcode::Ishl {
|
|
let shiftee = InsnInput { insn, input: 0 };
|
|
let shift_amt = InsnInput { insn, input: 1 };
|
|
|
|
// Can we get the shift amount as an immediate?
|
|
if let Some(shiftimm) = input_to_shiftimm(ctx, shift_amt) {
|
|
let shiftee_bits = ty_bits(ctx.input_ty(insn, 0));
|
|
if shiftee_bits <= std::u8::MAX as usize {
|
|
let shiftimm = shiftimm.mask(shiftee_bits as u8);
|
|
let reg = put_input_in_reg(ctx, shiftee, narrow_mode);
|
|
return ResultRS::RegShift(reg, ShiftOpAndAmt::new(ShiftOp::LSL, shiftimm));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ResultRS::Reg(put_input_in_reg(ctx, input, narrow_mode))
|
|
}
|
|
|
|
/// Lower an instruction input to a reg or reg/shift, or reg/extend operand.
|
|
/// This does not actually codegen the source instruction; it just uses the
|
|
/// vreg into which the source instruction will generate its value.
|
|
///
|
|
/// See note on `put_input_in_rs` for a description of `narrow_mode`.
|
|
fn put_input_in_rse<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRSE {
|
|
let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
|
|
if let Some((insn, 0)) = inputs.inst {
|
|
let op = ctx.data(insn).opcode();
|
|
let out_ty = ctx.output_ty(insn, 0);
|
|
let out_bits = ty_bits(out_ty);
|
|
|
|
// Is this a zero-extend or sign-extend and can we handle that with a register-mode operator?
|
|
if op == Opcode::Uextend || op == Opcode::Sextend {
|
|
let sign_extend = op == Opcode::Sextend;
|
|
let inner_ty = ctx.input_ty(insn, 0);
|
|
let inner_bits = ty_bits(inner_ty);
|
|
assert!(inner_bits < out_bits);
|
|
if match (sign_extend, narrow_mode) {
|
|
// A single zero-extend or sign-extend is equal to itself.
|
|
(_, NarrowValueMode::None) => true,
|
|
// Two zero-extends or sign-extends in a row is equal to a single zero-extend or sign-extend.
|
|
(false, NarrowValueMode::ZeroExtend32) | (false, NarrowValueMode::ZeroExtend64) => {
|
|
true
|
|
}
|
|
(true, NarrowValueMode::SignExtend32) | (true, NarrowValueMode::SignExtend64) => {
|
|
true
|
|
}
|
|
// A zero-extend and a sign-extend in a row is not equal to a single zero-extend or sign-extend
|
|
(false, NarrowValueMode::SignExtend32) | (false, NarrowValueMode::SignExtend64) => {
|
|
false
|
|
}
|
|
(true, NarrowValueMode::ZeroExtend32) | (true, NarrowValueMode::ZeroExtend64) => {
|
|
false
|
|
}
|
|
} {
|
|
let extendop = match (sign_extend, inner_bits) {
|
|
(true, 8) => ExtendOp::SXTB,
|
|
(false, 8) => ExtendOp::UXTB,
|
|
(true, 16) => ExtendOp::SXTH,
|
|
(false, 16) => ExtendOp::UXTH,
|
|
(true, 32) => ExtendOp::SXTW,
|
|
(false, 32) => ExtendOp::UXTW,
|
|
_ => unreachable!(),
|
|
};
|
|
let reg =
|
|
put_input_in_reg(ctx, InsnInput { insn, input: 0 }, NarrowValueMode::None);
|
|
return ResultRSE::RegExtend(reg, extendop);
|
|
}
|
|
}
|
|
|
|
// If `out_ty` is smaller than 32 bits and we need to zero- or sign-extend,
|
|
// then get the result into a register and return an Extend-mode operand on
|
|
// that register.
|
|
if narrow_mode != NarrowValueMode::None
|
|
&& ((narrow_mode.is_32bit() && out_bits < 32)
|
|
|| (!narrow_mode.is_32bit() && out_bits < 64))
|
|
{
|
|
let reg = put_input_in_reg(ctx, input, NarrowValueMode::None);
|
|
let extendop = match (narrow_mode, out_bits) {
|
|
(NarrowValueMode::SignExtend32, 1) | (NarrowValueMode::SignExtend64, 1) => {
|
|
ExtendOp::SXTB
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 1) | (NarrowValueMode::ZeroExtend64, 1) => {
|
|
ExtendOp::UXTB
|
|
}
|
|
(NarrowValueMode::SignExtend32, 8) | (NarrowValueMode::SignExtend64, 8) => {
|
|
ExtendOp::SXTB
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 8) | (NarrowValueMode::ZeroExtend64, 8) => {
|
|
ExtendOp::UXTB
|
|
}
|
|
(NarrowValueMode::SignExtend32, 16) | (NarrowValueMode::SignExtend64, 16) => {
|
|
ExtendOp::SXTH
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 16) | (NarrowValueMode::ZeroExtend64, 16) => {
|
|
ExtendOp::UXTH
|
|
}
|
|
(NarrowValueMode::SignExtend64, 32) => ExtendOp::SXTW,
|
|
(NarrowValueMode::ZeroExtend64, 32) => ExtendOp::UXTW,
|
|
_ => unreachable!(),
|
|
};
|
|
return ResultRSE::RegExtend(reg, extendop);
|
|
}
|
|
}
|
|
|
|
ResultRSE::from_rs(put_input_in_rs(ctx, input, narrow_mode))
|
|
}
|
|
|
|
pub(crate) fn put_input_in_rse_imm12<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRSEImm12 {
|
|
if let Some(imm_value) = input_to_const(ctx, input) {
|
|
if let Some(i) = Imm12::maybe_from_u64(imm_value) {
|
|
return ResultRSEImm12::Imm12(i);
|
|
}
|
|
}
|
|
|
|
ResultRSEImm12::from_rse(put_input_in_rse(ctx, input, narrow_mode))
|
|
}
|
|
|
|
/// Like `put_input_in_rse_imm12` above, except is allowed to negate the
|
|
/// argument (assuming a two's-complement representation with the given bit
|
|
/// width) if this allows use of 12-bit immediate. Used to flip `add`s with
|
|
/// negative immediates to `sub`s (and vice-versa).
|
|
pub(crate) fn put_input_in_rse_imm12_maybe_negated<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
twos_complement_bits: usize,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> (ResultRSEImm12, bool) {
|
|
assert!(twos_complement_bits <= 64);
|
|
if let Some(imm_value) = input_to_const(ctx, input) {
|
|
if let Some(i) = Imm12::maybe_from_u64(imm_value) {
|
|
return (ResultRSEImm12::Imm12(i), false);
|
|
}
|
|
let sign_extended =
|
|
((imm_value as i64) << (64 - twos_complement_bits)) >> (64 - twos_complement_bits);
|
|
let inverted = sign_extended.wrapping_neg();
|
|
if let Some(i) = Imm12::maybe_from_u64(inverted as u64) {
|
|
return (ResultRSEImm12::Imm12(i), true);
|
|
}
|
|
}
|
|
|
|
(
|
|
ResultRSEImm12::from_rse(put_input_in_rse(ctx, input, narrow_mode)),
|
|
false,
|
|
)
|
|
}
|
|
|
|
pub(crate) fn put_input_in_rs_immlogic<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRSImmLogic {
|
|
if let Some(imm_value) = input_to_const(ctx, input) {
|
|
let ty = ctx.input_ty(input.insn, input.input);
|
|
let ty = if ty_bits(ty) < 32 { I32 } else { ty };
|
|
if let Some(i) = ImmLogic::maybe_from_u64(imm_value, ty) {
|
|
return ResultRSImmLogic::ImmLogic(i);
|
|
}
|
|
}
|
|
|
|
ResultRSImmLogic::from_rs(put_input_in_rs(ctx, input, narrow_mode))
|
|
}
|
|
|
|
pub(crate) fn put_input_in_reg_immshift<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
shift_width_bits: usize,
|
|
) -> ResultRegImmShift {
|
|
if let Some(imm_value) = input_to_const(ctx, input) {
|
|
let imm_value = imm_value & ((shift_width_bits - 1) as u64);
|
|
if let Some(immshift) = ImmShift::maybe_from_u64(imm_value) {
|
|
return ResultRegImmShift::ImmShift(immshift);
|
|
}
|
|
}
|
|
|
|
ResultRegImmShift::Reg(put_input_in_reg(ctx, input, NarrowValueMode::None))
|
|
}
|
|
|
|
//============================================================================
|
|
// ALU instruction constructors.
|
|
|
|
pub(crate) fn alu_inst_imm12(op: ALUOp, rd: Writable<Reg>, rn: Reg, rm: ResultRSEImm12) -> Inst {
|
|
match rm {
|
|
ResultRSEImm12::Imm12(imm12) => Inst::AluRRImm12 {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
imm12,
|
|
},
|
|
ResultRSEImm12::Reg(rm) => Inst::AluRRR {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
},
|
|
ResultRSEImm12::RegShift(rm, shiftop) => Inst::AluRRRShift {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
shiftop,
|
|
},
|
|
ResultRSEImm12::RegExtend(rm, extendop) => Inst::AluRRRExtend {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
extendop,
|
|
},
|
|
}
|
|
}
|
|
|
|
pub(crate) fn alu_inst_immlogic(
|
|
op: ALUOp,
|
|
rd: Writable<Reg>,
|
|
rn: Reg,
|
|
rm: ResultRSImmLogic,
|
|
) -> Inst {
|
|
match rm {
|
|
ResultRSImmLogic::ImmLogic(imml) => Inst::AluRRImmLogic {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
imml,
|
|
},
|
|
ResultRSImmLogic::Reg(rm) => Inst::AluRRR {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
},
|
|
ResultRSImmLogic::RegShift(rm, shiftop) => Inst::AluRRRShift {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
shiftop,
|
|
},
|
|
}
|
|
}
|
|
|
|
pub(crate) fn alu_inst_immshift(
|
|
op: ALUOp,
|
|
rd: Writable<Reg>,
|
|
rn: Reg,
|
|
rm: ResultRegImmShift,
|
|
) -> Inst {
|
|
match rm {
|
|
ResultRegImmShift::ImmShift(immshift) => Inst::AluRRImmShift {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
immshift,
|
|
},
|
|
ResultRegImmShift::Reg(rm) => Inst::AluRRR {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
},
|
|
}
|
|
}
|
|
|
|
//============================================================================
|
|
// Lowering: addressing mode support. Takes instruction directly, rather
|
|
// than an `InsnInput`, to do more introspection.
|
|
|
|
/// 32-bit addends that make up an address: an input, and an extension mode on that
|
|
/// input.
|
|
type AddressAddend32List = SmallVec<[(Reg, ExtendOp); 4]>;
|
|
/// 64-bit addends that make up an address: just an input.
|
|
type AddressAddend64List = SmallVec<[Reg; 4]>;
|
|
|
|
/// Collect all addends that feed into an address computation, with extend-modes
|
|
/// on each. Note that a load/store may have multiple address components (and
|
|
/// the CLIF semantics are that these components are added to form the final
|
|
/// address), but sometimes the CLIF that we receive still has arguments that
|
|
/// refer to `iadd` instructions. We also want to handle uextend/sextend below
|
|
/// the add(s).
|
|
///
|
|
/// We match any 64-bit add (and descend into its inputs), and we match any
|
|
/// 32-to-64-bit sign or zero extension. The returned addend-list will use
|
|
/// NarrowValueMode values to indicate how to extend each input:
|
|
///
|
|
/// - NarrowValueMode::None: the associated input is 64 bits wide; no extend.
|
|
/// - NarrowValueMode::SignExtend64: the associated input is 32 bits wide;
|
|
/// do a sign-extension.
|
|
/// - NarrowValueMode::ZeroExtend64: the associated input is 32 bits wide;
|
|
/// do a zero-extension.
|
|
///
|
|
/// We do not descend further into the inputs of extensions (unless it is a constant),
|
|
/// because supporting (e.g.) a 32-bit add that is later extended would require
|
|
/// additional masking of high-order bits, which is too complex. So, in essence, we
|
|
/// descend any number of adds from the roots, collecting all 64-bit address addends;
|
|
/// then possibly support extensions at these leaves.
|
|
fn collect_address_addends<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
roots: &[InsnInput],
|
|
) -> (AddressAddend64List, AddressAddend32List, i64) {
|
|
let mut result32: AddressAddend32List = SmallVec::new();
|
|
let mut result64: AddressAddend64List = SmallVec::new();
|
|
let mut offset: i64 = 0;
|
|
|
|
let mut workqueue: SmallVec<[InsnInput; 4]> = roots.iter().cloned().collect();
|
|
|
|
while let Some(input) = workqueue.pop() {
|
|
debug_assert!(ty_bits(ctx.input_ty(input.insn, input.input)) == 64);
|
|
if let Some((op, insn)) = maybe_input_insn_multi(
|
|
ctx,
|
|
input,
|
|
&[
|
|
Opcode::Uextend,
|
|
Opcode::Sextend,
|
|
Opcode::Iadd,
|
|
Opcode::Iconst,
|
|
],
|
|
) {
|
|
match op {
|
|
Opcode::Uextend | Opcode::Sextend if ty_bits(ctx.input_ty(insn, 0)) == 32 => {
|
|
let extendop = if op == Opcode::Uextend {
|
|
ExtendOp::UXTW
|
|
} else {
|
|
ExtendOp::SXTW
|
|
};
|
|
let extendee_input = InsnInput { insn, input: 0 };
|
|
// If the input is a zero-extension of a constant, add the value to the known
|
|
// offset.
|
|
// Only do this for zero-extension, as generating a sign-extended
|
|
// constant may be more instructions than using the 'SXTW' addressing mode.
|
|
if let (Some(insn), ExtendOp::UXTW) = (
|
|
maybe_input_insn(ctx, extendee_input, Opcode::Iconst),
|
|
extendop,
|
|
) {
|
|
let value = (ctx.get_constant(insn).unwrap() & 0xFFFF_FFFF_u64) as i64;
|
|
offset += value;
|
|
} else {
|
|
let reg = put_input_in_reg(ctx, extendee_input, NarrowValueMode::None);
|
|
result32.push((reg, extendop));
|
|
}
|
|
}
|
|
Opcode::Uextend | Opcode::Sextend => {
|
|
let reg = put_input_in_reg(ctx, input, NarrowValueMode::None);
|
|
result64.push(reg);
|
|
}
|
|
Opcode::Iadd => {
|
|
for input in 0..ctx.num_inputs(insn) {
|
|
let addend = InsnInput { insn, input };
|
|
workqueue.push(addend);
|
|
}
|
|
}
|
|
Opcode::Iconst => {
|
|
let value: i64 = ctx.get_constant(insn).unwrap() as i64;
|
|
offset += value;
|
|
}
|
|
_ => panic!("Unexpected opcode from maybe_input_insn_multi"),
|
|
}
|
|
} else {
|
|
let reg = put_input_in_reg(ctx, input, NarrowValueMode::ZeroExtend64);
|
|
result64.push(reg);
|
|
}
|
|
}
|
|
|
|
(result64, result32, offset)
|
|
}
|
|
|
|
/// Lower the address of a load or store.
|
|
pub(crate) fn lower_address<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
elem_ty: Type,
|
|
roots: &[InsnInput],
|
|
offset: i32,
|
|
) -> AMode {
|
|
// TODO: support base_reg + scale * index_reg. For this, we would need to pattern-match shl or
|
|
// mul instructions (Load/StoreComplex don't include scale factors).
|
|
|
|
// Collect addends through an arbitrary tree of 32-to-64-bit sign/zero
|
|
// extends and addition ops. We update these as we consume address
|
|
// components, so they represent the remaining addends not yet handled.
|
|
let (mut addends64, mut addends32, args_offset) = collect_address_addends(ctx, roots);
|
|
let mut offset = args_offset + (offset as i64);
|
|
|
|
trace!(
|
|
"lower_address: addends64 {:?}, addends32 {:?}, offset {}",
|
|
addends64,
|
|
addends32,
|
|
offset
|
|
);
|
|
|
|
// First, decide what the `AMode` will be. Take one extendee and one 64-bit
|
|
// reg, or two 64-bit regs, or a 64-bit reg and a 32-bit reg with extension,
|
|
// or some other combination as appropriate.
|
|
let memarg = if addends64.len() > 0 {
|
|
if addends32.len() > 0 {
|
|
let (reg32, extendop) = addends32.pop().unwrap();
|
|
let reg64 = addends64.pop().unwrap();
|
|
AMode::RegExtended(reg64, reg32, extendop)
|
|
} else if offset > 0 && offset < 0x1000 {
|
|
let reg64 = addends64.pop().unwrap();
|
|
let off = offset;
|
|
offset = 0;
|
|
AMode::RegOffset(reg64, off, elem_ty)
|
|
} else if addends64.len() >= 2 {
|
|
let reg1 = addends64.pop().unwrap();
|
|
let reg2 = addends64.pop().unwrap();
|
|
AMode::RegReg(reg1, reg2)
|
|
} else {
|
|
let reg1 = addends64.pop().unwrap();
|
|
AMode::reg(reg1)
|
|
}
|
|
} else
|
|
/* addends64.len() == 0 */
|
|
{
|
|
if addends32.len() > 0 {
|
|
let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let (reg1, extendop) = addends32.pop().unwrap();
|
|
let signed = match extendop {
|
|
ExtendOp::SXTW => true,
|
|
ExtendOp::UXTW => false,
|
|
_ => unreachable!(),
|
|
};
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: reg1,
|
|
signed,
|
|
from_bits: 32,
|
|
to_bits: 64,
|
|
});
|
|
if let Some((reg2, extendop)) = addends32.pop() {
|
|
AMode::RegExtended(tmp.to_reg(), reg2, extendop)
|
|
} else {
|
|
AMode::reg(tmp.to_reg())
|
|
}
|
|
} else
|
|
/* addends32.len() == 0 */
|
|
{
|
|
let off_reg = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
lower_constant_u64(ctx, off_reg, offset as u64);
|
|
offset = 0;
|
|
AMode::reg(off_reg.to_reg())
|
|
}
|
|
};
|
|
|
|
// At this point, if we have any remaining components, we need to allocate a
|
|
// temp, replace one of the registers in the AMode with the temp, and emit
|
|
// instructions to add together the remaining components. Return immediately
|
|
// if this is *not* the case.
|
|
if offset == 0 && addends32.len() == 0 && addends64.len() == 0 {
|
|
return memarg;
|
|
}
|
|
|
|
// Allocate the temp and shoehorn it into the AMode.
|
|
let addr = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let (reg, memarg) = match memarg {
|
|
AMode::RegExtended(r1, r2, extendop) => {
|
|
(r1, AMode::RegExtended(addr.to_reg(), r2, extendop))
|
|
}
|
|
AMode::RegOffset(r, off, ty) => (r, AMode::RegOffset(addr.to_reg(), off, ty)),
|
|
AMode::RegReg(r1, r2) => (r2, AMode::RegReg(addr.to_reg(), r1)),
|
|
AMode::UnsignedOffset(r, imm) => (r, AMode::UnsignedOffset(addr.to_reg(), imm)),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
// If there is any offset, load that first into `addr`, and add the `reg`
|
|
// that we kicked out of the `AMode`; otherwise, start with that reg.
|
|
if offset != 0 {
|
|
// If we can fit offset or -offset in an imm12, use an add-imm
|
|
// to combine the reg and offset. Otherwise, load value first then add.
|
|
if let Some(imm12) = Imm12::maybe_from_u64(offset as u64) {
|
|
ctx.emit(Inst::AluRRImm12 {
|
|
alu_op: ALUOp::Add64,
|
|
rd: addr,
|
|
rn: reg,
|
|
imm12,
|
|
});
|
|
} else if let Some(imm12) = Imm12::maybe_from_u64(offset.wrapping_neg() as u64) {
|
|
ctx.emit(Inst::AluRRImm12 {
|
|
alu_op: ALUOp::Sub64,
|
|
rd: addr,
|
|
rn: reg,
|
|
imm12,
|
|
});
|
|
} else {
|
|
lower_constant_u64(ctx, addr, offset as u64);
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Add64,
|
|
rd: addr,
|
|
rn: addr.to_reg(),
|
|
rm: reg,
|
|
});
|
|
}
|
|
} else {
|
|
ctx.emit(Inst::gen_move(addr, reg, I64));
|
|
}
|
|
|
|
// Now handle reg64 and reg32-extended components.
|
|
for reg in addends64 {
|
|
// If the register is the stack reg, we must move it to another reg
|
|
// before adding it.
|
|
let reg = if reg == stack_reg() {
|
|
let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
ctx.emit(Inst::gen_move(tmp, stack_reg(), I64));
|
|
tmp.to_reg()
|
|
} else {
|
|
reg
|
|
};
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Add64,
|
|
rd: addr,
|
|
rn: addr.to_reg(),
|
|
rm: reg,
|
|
});
|
|
}
|
|
for (reg, extendop) in addends32 {
|
|
assert!(reg != stack_reg());
|
|
ctx.emit(Inst::AluRRRExtend {
|
|
alu_op: ALUOp::Add64,
|
|
rd: addr,
|
|
rn: addr.to_reg(),
|
|
rm: reg,
|
|
extendop,
|
|
});
|
|
}
|
|
|
|
memarg
|
|
}
|
|
|
|
pub(crate) fn lower_constant_u64<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
value: u64,
|
|
) {
|
|
for inst in Inst::load_constant(rd, value) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_f32<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
value: f32,
|
|
) {
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
for inst in Inst::load_fp_constant32(rd, value.to_bits(), alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_f64<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
value: f64,
|
|
) {
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
for inst in Inst::load_fp_constant64(rd, value.to_bits(), alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_f128<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
value: u128,
|
|
) {
|
|
if value == 0 {
|
|
// Fast-track a common case. The general case, viz, calling `Inst::load_fp_constant128`,
|
|
// is potentially expensive.
|
|
ctx.emit(Inst::VecDupImm {
|
|
rd,
|
|
imm: ASIMDMovModImm::zero(ScalarSize::Size8),
|
|
invert: false,
|
|
size: VectorSize::Size8x16,
|
|
});
|
|
} else {
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
for inst in Inst::load_fp_constant128(rd, value, alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_splat_const<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
value: u64,
|
|
size: VectorSize,
|
|
) {
|
|
let (value, narrow_size) = match size.lane_size() {
|
|
ScalarSize::Size8 => (value as u8 as u64, ScalarSize::Size128),
|
|
ScalarSize::Size16 => (value as u16 as u64, ScalarSize::Size8),
|
|
ScalarSize::Size32 => (value as u32 as u64, ScalarSize::Size16),
|
|
ScalarSize::Size64 => (value, ScalarSize::Size32),
|
|
_ => unreachable!(),
|
|
};
|
|
let (value, size) = match Inst::get_replicated_vector_pattern(value as u128, narrow_size) {
|
|
Some((value, lane_size)) => (
|
|
value,
|
|
VectorSize::from_lane_size(lane_size, size.is_128bits()),
|
|
),
|
|
None => (value, size),
|
|
};
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
for inst in Inst::load_replicated_vector_pattern(rd, value, size, alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_condcode(cc: IntCC) -> Cond {
|
|
match cc {
|
|
IntCC::Equal => Cond::Eq,
|
|
IntCC::NotEqual => Cond::Ne,
|
|
IntCC::SignedGreaterThanOrEqual => Cond::Ge,
|
|
IntCC::SignedGreaterThan => Cond::Gt,
|
|
IntCC::SignedLessThanOrEqual => Cond::Le,
|
|
IntCC::SignedLessThan => Cond::Lt,
|
|
IntCC::UnsignedGreaterThanOrEqual => Cond::Hs,
|
|
IntCC::UnsignedGreaterThan => Cond::Hi,
|
|
IntCC::UnsignedLessThanOrEqual => Cond::Ls,
|
|
IntCC::UnsignedLessThan => Cond::Lo,
|
|
IntCC::Overflow => Cond::Vs,
|
|
IntCC::NotOverflow => Cond::Vc,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_fp_condcode(cc: FloatCC) -> Cond {
|
|
// Refer to `codegen/shared/src/condcodes.rs` and to the `FCMP` AArch64 docs.
|
|
// The FCMP instruction sets:
|
|
// NZCV
|
|
// - PCSR.NZCV = 0011 on UN (unordered),
|
|
// 0110 on EQ,
|
|
// 1000 on LT,
|
|
// 0010 on GT.
|
|
match cc {
|
|
// EQ | LT | GT. Vc => V clear.
|
|
FloatCC::Ordered => Cond::Vc,
|
|
// UN. Vs => V set.
|
|
FloatCC::Unordered => Cond::Vs,
|
|
// EQ. Eq => Z set.
|
|
FloatCC::Equal => Cond::Eq,
|
|
// UN | LT | GT. Ne => Z clear.
|
|
FloatCC::NotEqual => Cond::Ne,
|
|
// LT | GT.
|
|
FloatCC::OrderedNotEqual => unimplemented!(),
|
|
// UN | EQ
|
|
FloatCC::UnorderedOrEqual => unimplemented!(),
|
|
// LT. Mi => N set.
|
|
FloatCC::LessThan => Cond::Mi,
|
|
// LT | EQ. Ls => C clear or Z set.
|
|
FloatCC::LessThanOrEqual => Cond::Ls,
|
|
// GT. Gt => Z clear, N = V.
|
|
FloatCC::GreaterThan => Cond::Gt,
|
|
// GT | EQ. Ge => N = V.
|
|
FloatCC::GreaterThanOrEqual => Cond::Ge,
|
|
// UN | LT
|
|
FloatCC::UnorderedOrLessThan => unimplemented!(),
|
|
// UN | LT | EQ
|
|
FloatCC::UnorderedOrLessThanOrEqual => unimplemented!(),
|
|
// UN | GT
|
|
FloatCC::UnorderedOrGreaterThan => unimplemented!(),
|
|
// UN | GT | EQ
|
|
FloatCC::UnorderedOrGreaterThanOrEqual => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_vector_compare<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
mut rn: Reg,
|
|
mut rm: Reg,
|
|
ty: Type,
|
|
cond: Cond,
|
|
) -> CodegenResult<()> {
|
|
let is_float = match ty {
|
|
F32X4 | F64X2 => true,
|
|
_ => false,
|
|
};
|
|
let size = VectorSize::from_ty(ty);
|
|
// 'Less than' operations are implemented by swapping
|
|
// the order of operands and using the 'greater than'
|
|
// instructions.
|
|
// 'Not equal' is implemented with 'equal' and inverting
|
|
// the result.
|
|
let (alu_op, swap) = match (is_float, cond) {
|
|
(false, Cond::Eq) => (VecALUOp::Cmeq, false),
|
|
(false, Cond::Ne) => (VecALUOp::Cmeq, false),
|
|
(false, Cond::Ge) => (VecALUOp::Cmge, false),
|
|
(false, Cond::Gt) => (VecALUOp::Cmgt, false),
|
|
(false, Cond::Le) => (VecALUOp::Cmge, true),
|
|
(false, Cond::Lt) => (VecALUOp::Cmgt, true),
|
|
(false, Cond::Hs) => (VecALUOp::Cmhs, false),
|
|
(false, Cond::Hi) => (VecALUOp::Cmhi, false),
|
|
(false, Cond::Ls) => (VecALUOp::Cmhs, true),
|
|
(false, Cond::Lo) => (VecALUOp::Cmhi, true),
|
|
(true, Cond::Eq) => (VecALUOp::Fcmeq, false),
|
|
(true, Cond::Ne) => (VecALUOp::Fcmeq, false),
|
|
(true, Cond::Mi) => (VecALUOp::Fcmgt, true),
|
|
(true, Cond::Ls) => (VecALUOp::Fcmge, true),
|
|
(true, Cond::Ge) => (VecALUOp::Fcmge, false),
|
|
(true, Cond::Gt) => (VecALUOp::Fcmgt, false),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
if swap {
|
|
std::mem::swap(&mut rn, &mut rm);
|
|
}
|
|
|
|
ctx.emit(Inst::VecRRR {
|
|
alu_op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
size,
|
|
});
|
|
|
|
if cond == Cond::Ne {
|
|
ctx.emit(Inst::VecMisc {
|
|
op: VecMisc2::Not,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
size,
|
|
});
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Determines whether this condcode interprets inputs as signed or unsigned. See the
|
|
/// documentation for the `icmp` instruction in cranelift-codegen/meta/src/shared/instructions.rs
|
|
/// for further insights into this.
|
|
pub(crate) fn condcode_is_signed(cc: IntCC) -> bool {
|
|
match cc {
|
|
IntCC::Equal
|
|
| IntCC::UnsignedGreaterThanOrEqual
|
|
| IntCC::UnsignedGreaterThan
|
|
| IntCC::UnsignedLessThanOrEqual
|
|
| IntCC::UnsignedLessThan
|
|
| IntCC::NotEqual => false,
|
|
IntCC::SignedGreaterThanOrEqual
|
|
| IntCC::SignedGreaterThan
|
|
| IntCC::SignedLessThanOrEqual
|
|
| IntCC::SignedLessThan
|
|
| IntCC::Overflow
|
|
| IntCC::NotOverflow => true,
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
// Helpers for instruction lowering.
|
|
|
|
pub(crate) fn choose_32_64<T: Copy>(ty: Type, op32: T, op64: T) -> T {
|
|
let bits = ty_bits(ty);
|
|
if bits <= 32 {
|
|
op32
|
|
} else if bits == 64 {
|
|
op64
|
|
} else {
|
|
panic!("choose_32_64 on > 64 bits!")
|
|
}
|
|
}
|
|
|
|
/// Checks for an instance of `op` feeding the given input.
|
|
pub(crate) fn maybe_input_insn<C: LowerCtx<I = Inst>>(
|
|
c: &mut C,
|
|
input: InsnInput,
|
|
op: Opcode,
|
|
) -> Option<IRInst> {
|
|
let inputs = c.get_input_as_source_or_const(input.insn, input.input);
|
|
debug!(
|
|
"maybe_input_insn: input {:?} has options {:?}; looking for op {:?}",
|
|
input, inputs, op
|
|
);
|
|
if let Some((src_inst, _)) = inputs.inst {
|
|
let data = c.data(src_inst);
|
|
debug!(" -> input inst {:?}", data);
|
|
if data.opcode() == op {
|
|
return Some(src_inst);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Checks for an instance of any one of `ops` feeding the given input.
|
|
pub(crate) fn maybe_input_insn_multi<C: LowerCtx<I = Inst>>(
|
|
c: &mut C,
|
|
input: InsnInput,
|
|
ops: &[Opcode],
|
|
) -> Option<(Opcode, IRInst)> {
|
|
for &op in ops {
|
|
if let Some(inst) = maybe_input_insn(c, input, op) {
|
|
return Some((op, inst));
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Checks for an instance of `op` feeding the given input, possibly via a conversion `conv` (e.g.,
|
|
/// Bint or a bitcast).
|
|
///
|
|
/// FIXME cfallin 2020-03-30: this is really ugly. Factor out tree-matching stuff and make it
|
|
/// a bit more generic.
|
|
pub(crate) fn maybe_input_insn_via_conv<C: LowerCtx<I = Inst>>(
|
|
c: &mut C,
|
|
input: InsnInput,
|
|
op: Opcode,
|
|
conv: Opcode,
|
|
) -> Option<IRInst> {
|
|
let inputs = c.get_input_as_source_or_const(input.insn, input.input);
|
|
if let Some((src_inst, _)) = inputs.inst {
|
|
let data = c.data(src_inst);
|
|
if data.opcode() == op {
|
|
return Some(src_inst);
|
|
}
|
|
if data.opcode() == conv {
|
|
let inputs = c.get_input_as_source_or_const(src_inst, 0);
|
|
if let Some((src_inst, _)) = inputs.inst {
|
|
let data = c.data(src_inst);
|
|
if data.opcode() == op {
|
|
return Some(src_inst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
pub(crate) fn lower_icmp_or_ifcmp_to_flags<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
insn: IRInst,
|
|
is_signed: bool,
|
|
) {
|
|
debug!("lower_icmp_or_ifcmp_to_flags: insn {}", insn);
|
|
let ty = ctx.input_ty(insn, 0);
|
|
let bits = ty_bits(ty);
|
|
let narrow_mode = match (bits <= 32, is_signed) {
|
|
(true, true) => NarrowValueMode::SignExtend32,
|
|
(true, false) => NarrowValueMode::ZeroExtend32,
|
|
(false, true) => NarrowValueMode::SignExtend64,
|
|
(false, false) => NarrowValueMode::ZeroExtend64,
|
|
};
|
|
let inputs = [InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }];
|
|
let ty = ctx.input_ty(insn, 0);
|
|
let rn = put_input_in_reg(ctx, inputs[0], narrow_mode);
|
|
let rm = put_input_in_rse_imm12(ctx, inputs[1], narrow_mode);
|
|
debug!("lower_icmp_or_ifcmp_to_flags: rn = {:?} rm = {:?}", rn, rm);
|
|
let alu_op = choose_32_64(ty, ALUOp::SubS32, ALUOp::SubS64);
|
|
let rd = writable_zero_reg();
|
|
ctx.emit(alu_inst_imm12(alu_op, rd, rn, rm));
|
|
}
|
|
|
|
pub(crate) fn lower_fcmp_or_ffcmp_to_flags<C: LowerCtx<I = Inst>>(ctx: &mut C, insn: IRInst) {
|
|
let ty = ctx.input_ty(insn, 0);
|
|
let bits = ty_bits(ty);
|
|
let inputs = [InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }];
|
|
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
|
|
let rm = put_input_in_reg(ctx, inputs[1], NarrowValueMode::None);
|
|
match bits {
|
|
32 => {
|
|
ctx.emit(Inst::FpuCmp32 { rn, rm });
|
|
}
|
|
64 => {
|
|
ctx.emit(Inst::FpuCmp64 { rn, rm });
|
|
}
|
|
_ => panic!("Unknown float size"),
|
|
}
|
|
}
|
|
|
|
/// Materialize a boolean value into a register from the flags
|
|
/// (e.g set by a comparison).
|
|
/// A 0 / -1 (all-ones) result as expected for bool operations.
|
|
pub(crate) fn materialize_bool_result<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
insn: IRInst,
|
|
rd: Writable<Reg>,
|
|
cond: Cond,
|
|
) {
|
|
// A boolean is 0 / -1; if output width is > 1 use `csetm`,
|
|
// otherwise use `cset`.
|
|
if ty_bits(ctx.output_ty(insn, 0)) > 1 {
|
|
ctx.emit(Inst::CSetm { rd, cond });
|
|
} else {
|
|
ctx.emit(Inst::CSet { rd, cond });
|
|
}
|
|
}
|
|
|
|
/// This is target-word-size dependent. And it excludes booleans and reftypes.
|
|
pub(crate) fn is_valid_atomic_transaction_ty(ty: Type) -> bool {
|
|
match ty {
|
|
I8 | I16 | I32 | I64 => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
fn load_op_to_ty(op: Opcode) -> Option<Type> {
|
|
match op {
|
|
Opcode::Sload8 | Opcode::Uload8 | Opcode::Sload8Complex | Opcode::Uload8Complex => Some(I8),
|
|
Opcode::Sload16 | Opcode::Uload16 | Opcode::Sload16Complex | Opcode::Uload16Complex => {
|
|
Some(I16)
|
|
}
|
|
Opcode::Sload32 | Opcode::Uload32 | Opcode::Sload32Complex | Opcode::Uload32Complex => {
|
|
Some(I32)
|
|
}
|
|
Opcode::Load | Opcode::LoadComplex => None,
|
|
Opcode::Sload8x8 | Opcode::Uload8x8 | Opcode::Sload8x8Complex | Opcode::Uload8x8Complex => {
|
|
Some(I8X8)
|
|
}
|
|
Opcode::Sload16x4
|
|
| Opcode::Uload16x4
|
|
| Opcode::Sload16x4Complex
|
|
| Opcode::Uload16x4Complex => Some(I16X4),
|
|
Opcode::Sload32x2
|
|
| Opcode::Uload32x2
|
|
| Opcode::Sload32x2Complex
|
|
| Opcode::Uload32x2Complex => Some(I32X2),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Helper to lower a load instruction; this is used in several places, because
|
|
/// a load can sometimes be merged into another operation.
|
|
pub(crate) fn lower_load<C: LowerCtx<I = Inst>, F: FnMut(&mut C, Writable<Reg>, Type, AMode)>(
|
|
ctx: &mut C,
|
|
ir_inst: IRInst,
|
|
inputs: &[InsnInput],
|
|
output: InsnOutput,
|
|
mut f: F,
|
|
) {
|
|
let op = ctx.data(ir_inst).opcode();
|
|
|
|
let elem_ty = load_op_to_ty(op).unwrap_or_else(|| ctx.output_ty(ir_inst, 0));
|
|
|
|
let off = ctx.data(ir_inst).load_store_offset().unwrap();
|
|
let mem = lower_address(ctx, elem_ty, &inputs[..], off);
|
|
let rd = get_output_reg(ctx, output).only_reg().unwrap();
|
|
|
|
f(ctx, rd, elem_ty, mem);
|
|
}
|
|
|
|
//=============================================================================
|
|
// Lowering-backend trait implementation.
|
|
|
|
impl LowerBackend for AArch64Backend {
|
|
type MInst = Inst;
|
|
|
|
fn lower<C: LowerCtx<I = Inst>>(&self, ctx: &mut C, ir_inst: IRInst) -> CodegenResult<()> {
|
|
lower_inst::lower_insn_to_regs(ctx, ir_inst, &self.flags, &self.isa_flags)
|
|
}
|
|
|
|
fn lower_branch_group<C: LowerCtx<I = Inst>>(
|
|
&self,
|
|
ctx: &mut C,
|
|
branches: &[IRInst],
|
|
targets: &[MachLabel],
|
|
) -> CodegenResult<()> {
|
|
lower_inst::lower_branch(ctx, branches, targets)
|
|
}
|
|
|
|
fn maybe_pinned_reg(&self) -> Option<Reg> {
|
|
Some(xreg(PINNED_REG))
|
|
}
|
|
}
|