This commit migrates the `imul` clif instruction lowering for AArch64 to ISLE. This is a relatively complicated instruction with lots of special cases due to the simd proposal for wasm. Like x64, however, the special casing lends itself to ISLE quite well and the lowerings here in theory are pretty straightforward. The main gotcha of this commit is that this encounters a unique situation which hasn't been encountered yet with other lowerings, namely the `Umlal32` instruction used in the implementation of `i64x2.mul` is unique in the `VecRRRLongOp` class of instructions in that it both reads and writes the destination register (`use_mod` instead of simply `use_def`). This meant that I needed to add another helper in ISLe for creating a `vec_rrrr_long` instruction (despite this enum variant not actually existing) which implicitly moves the first operand into the destination before issuing the actual `VecRRRLong` instruction.
1964 lines
64 KiB
Rust
1964 lines
64 KiB
Rust
//! Lowering rules for AArch64.
|
|
//!
|
|
//! TODO: opportunities for better code generation:
|
|
//!
|
|
//! - Smarter use of addressing modes. Recognize a+SCALE*b patterns. Recognize
|
|
//! pre/post-index opportunities.
|
|
//!
|
|
//! - Floating-point immediates (FIMM instruction).
|
|
|
|
use crate::ir::condcodes::{FloatCC, IntCC};
|
|
use crate::ir::types::*;
|
|
use crate::ir::Inst as IRInst;
|
|
use crate::ir::{Opcode, Type, Value};
|
|
use crate::machinst::lower::*;
|
|
use crate::machinst::*;
|
|
use crate::{CodegenError, CodegenResult};
|
|
|
|
use crate::isa::aarch64::inst::*;
|
|
use crate::isa::aarch64::AArch64Backend;
|
|
|
|
use super::lower_inst;
|
|
|
|
use crate::data_value::DataValue;
|
|
use regalloc::{Reg, Writable};
|
|
use smallvec::SmallVec;
|
|
use std::cmp;
|
|
|
|
pub mod isle;
|
|
|
|
//============================================================================
|
|
// Result enum types.
|
|
//
|
|
// Lowering of a given value results in one of these enums, depending on the
|
|
// modes in which we can accept the value.
|
|
|
|
/// A lowering result: register, register-shift. An SSA value can always be
|
|
/// lowered into one of these options; the register form is the fallback.
|
|
#[derive(Clone, Debug)]
|
|
enum ResultRS {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
}
|
|
|
|
/// A lowering result: register, register-shift, register-extend. An SSA value can always be
|
|
/// lowered into one of these options; the register form is the fallback.
|
|
#[derive(Clone, Debug)]
|
|
enum ResultRSE {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
RegExtend(Reg, ExtendOp),
|
|
}
|
|
|
|
impl ResultRSE {
|
|
fn from_rs(rs: ResultRS) -> ResultRSE {
|
|
match rs {
|
|
ResultRS::Reg(r) => ResultRSE::Reg(r),
|
|
ResultRS::RegShift(r, s) => ResultRSE::RegShift(r, s),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A lowering result: register, register-shift, register-extend, or 12-bit immediate form.
|
|
/// An SSA value can always be lowered into one of these options; the register form is the
|
|
/// fallback.
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) enum ResultRSEImm12 {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
RegExtend(Reg, ExtendOp),
|
|
Imm12(Imm12),
|
|
}
|
|
|
|
impl ResultRSEImm12 {
|
|
fn from_rse(rse: ResultRSE) -> ResultRSEImm12 {
|
|
match rse {
|
|
ResultRSE::Reg(r) => ResultRSEImm12::Reg(r),
|
|
ResultRSE::RegShift(r, s) => ResultRSEImm12::RegShift(r, s),
|
|
ResultRSE::RegExtend(r, e) => ResultRSEImm12::RegExtend(r, e),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A lowering result: register, register-shift, or logical immediate form.
|
|
/// An SSA value can always be lowered into one of these options; the register form is the
|
|
/// fallback.
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) enum ResultRSImmLogic {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
ImmLogic(ImmLogic),
|
|
}
|
|
|
|
impl ResultRSImmLogic {
|
|
fn from_rs(rse: ResultRS) -> ResultRSImmLogic {
|
|
match rse {
|
|
ResultRS::Reg(r) => ResultRSImmLogic::Reg(r),
|
|
ResultRS::RegShift(r, s) => ResultRSImmLogic::RegShift(r, s),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A lowering result: register or immediate shift amount (arg to a shift op).
|
|
/// An SSA value can always be lowered into one of these options; the register form is the
|
|
/// fallback.
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) enum ResultRegImmShift {
|
|
Reg(Reg),
|
|
ImmShift(ImmShift),
|
|
}
|
|
|
|
impl ResultRegImmShift {
|
|
pub fn unwrap_reg(self) -> Reg {
|
|
match self {
|
|
ResultRegImmShift::Reg(r) => r,
|
|
_ => panic!("Unwrapped ResultRegImmShift, expected reg, got: {:?}", self),
|
|
}
|
|
}
|
|
}
|
|
|
|
//============================================================================
|
|
// Lowering: convert instruction inputs to forms that we can use.
|
|
|
|
/// Lower an instruction input to a 64-bit constant, if possible.
|
|
pub(crate) fn input_to_const<C: LowerCtx<I = Inst>>(ctx: &mut C, input: InsnInput) -> Option<u64> {
|
|
let input = ctx.get_input_as_source_or_const(input.insn, input.input);
|
|
input.constant
|
|
}
|
|
|
|
/// Lower an instruction input to a constant register-shift amount, if possible.
|
|
pub(crate) fn input_to_shiftimm<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
) -> Option<ShiftOpShiftImm> {
|
|
input_to_const(ctx, input).and_then(ShiftOpShiftImm::maybe_from_shift)
|
|
}
|
|
|
|
pub(crate) fn const_param_to_u128<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
inst: IRInst,
|
|
) -> Option<u128> {
|
|
match ctx.get_immediate(inst) {
|
|
Some(DataValue::V128(bytes)) => Some(u128::from_le_bytes(bytes)),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// How to handle narrow values loaded into registers; see note on `narrow_mode`
|
|
/// parameter to `put_input_in_*` below.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub(crate) enum NarrowValueMode {
|
|
None,
|
|
/// Zero-extend to 32 bits if original is < 32 bits.
|
|
ZeroExtend32,
|
|
/// Sign-extend to 32 bits if original is < 32 bits.
|
|
SignExtend32,
|
|
/// Zero-extend to 64 bits if original is < 64 bits.
|
|
ZeroExtend64,
|
|
/// Sign-extend to 64 bits if original is < 64 bits.
|
|
SignExtend64,
|
|
}
|
|
|
|
impl NarrowValueMode {
|
|
fn is_32bit(&self) -> bool {
|
|
match self {
|
|
NarrowValueMode::None => false,
|
|
NarrowValueMode::ZeroExtend32 | NarrowValueMode::SignExtend32 => true,
|
|
NarrowValueMode::ZeroExtend64 | NarrowValueMode::SignExtend64 => false,
|
|
}
|
|
}
|
|
|
|
fn is_signed(&self) -> bool {
|
|
match self {
|
|
NarrowValueMode::SignExtend32 | NarrowValueMode::SignExtend64 => true,
|
|
NarrowValueMode::ZeroExtend32 | NarrowValueMode::ZeroExtend64 => false,
|
|
NarrowValueMode::None => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emits instruction(s) to generate the given constant value into newly-allocated
|
|
/// temporary registers, returning these registers.
|
|
fn generate_constant<C: LowerCtx<I = Inst>>(ctx: &mut C, ty: Type, c: u128) -> ValueRegs<Reg> {
|
|
let from_bits = ty_bits(ty);
|
|
let masked = if from_bits < 128 {
|
|
c & ((1u128 << from_bits) - 1)
|
|
} else {
|
|
c
|
|
};
|
|
|
|
let cst_copy = ctx.alloc_tmp(ty);
|
|
for inst in Inst::gen_constant(cst_copy, masked, ty, |ty| {
|
|
ctx.alloc_tmp(ty).only_reg().unwrap()
|
|
})
|
|
.into_iter()
|
|
{
|
|
ctx.emit(inst);
|
|
}
|
|
non_writable_value_regs(cst_copy)
|
|
}
|
|
|
|
/// Extends a register according to `narrow_mode`.
|
|
/// If extended, the value is always extended to 64 bits, for simplicity.
|
|
fn extend_reg<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
ty: Type,
|
|
in_reg: Reg,
|
|
is_const: bool,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> Reg {
|
|
let from_bits = ty_bits(ty) as u8;
|
|
match (narrow_mode, from_bits) {
|
|
(NarrowValueMode::None, _) => in_reg,
|
|
(NarrowValueMode::ZeroExtend32, n) if n < 32 => {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: false,
|
|
from_bits,
|
|
to_bits: 32,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
(NarrowValueMode::SignExtend32, n) if n < 32 => {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: true,
|
|
from_bits,
|
|
to_bits: 32,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 32) | (NarrowValueMode::SignExtend32, 32) => in_reg,
|
|
|
|
(NarrowValueMode::ZeroExtend64, n) if n < 64 => {
|
|
if is_const {
|
|
// Constants are zero-extended to full 64-bit width on load already.
|
|
in_reg
|
|
} else {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: false,
|
|
from_bits,
|
|
to_bits: 64,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
}
|
|
(NarrowValueMode::SignExtend64, n) if n < 64 => {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: true,
|
|
from_bits,
|
|
to_bits: 64,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
(_, 64) => in_reg,
|
|
(_, 128) => in_reg,
|
|
|
|
_ => panic!(
|
|
"Unsupported input width: input ty {} bits {} mode {:?}",
|
|
ty, from_bits, narrow_mode
|
|
),
|
|
}
|
|
}
|
|
|
|
/// Lowers an instruction input to multiple regs
|
|
fn lower_value_to_regs<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
value: Value,
|
|
) -> (ValueRegs<Reg>, Type, bool) {
|
|
log::trace!("lower_value_to_regs: value {:?}", value);
|
|
let ty = ctx.value_ty(value);
|
|
let inputs = ctx.get_value_as_source_or_const(value);
|
|
let is_const = inputs.constant.is_some();
|
|
|
|
let in_regs = if let Some(c) = inputs.constant {
|
|
// Generate constants fresh at each use to minimize long-range register pressure.
|
|
generate_constant(ctx, ty, c as u128)
|
|
} else {
|
|
ctx.put_value_in_regs(value)
|
|
};
|
|
|
|
(in_regs, ty, is_const)
|
|
}
|
|
|
|
/// Lower an instruction input to a register
|
|
///
|
|
/// The given register will be extended appropriately, according to
|
|
/// `narrow_mode` and the input's type. If extended, the value is
|
|
/// always extended to 64 bits, for simplicity.
|
|
pub(crate) fn put_input_in_reg<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> Reg {
|
|
let value = ctx.input_as_value(input.insn, input.input);
|
|
put_value_in_reg(ctx, value, narrow_mode)
|
|
}
|
|
|
|
/// Like above, only for values
|
|
fn put_value_in_reg<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
value: Value,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> Reg {
|
|
let (in_regs, ty, is_const) = lower_value_to_regs(ctx, value);
|
|
let reg = in_regs
|
|
.only_reg()
|
|
.expect("Multi-register value not expected");
|
|
|
|
extend_reg(ctx, ty, reg, is_const, narrow_mode)
|
|
}
|
|
|
|
/// Lower an instruction input to multiple regs
|
|
pub(crate) fn put_input_in_regs<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
) -> ValueRegs<Reg> {
|
|
let value = ctx.input_as_value(input.insn, input.input);
|
|
let (in_regs, _, _) = lower_value_to_regs(ctx, value);
|
|
in_regs
|
|
}
|
|
|
|
/// Lower an instruction input to a reg or reg/shift, or reg/extend operand.
|
|
///
|
|
/// The `narrow_mode` flag indicates whether the consumer of this value needs
|
|
/// the high bits clear. For many operations, such as an add/sub/mul or any
|
|
/// bitwise logical operation, the low-bit results depend only on the low-bit
|
|
/// inputs, so e.g. we can do an 8 bit add on 32 bit registers where the 8-bit
|
|
/// value is stored in the low 8 bits of the register and the high 24 bits are
|
|
/// undefined. If the op truly needs the high N bits clear (such as for a
|
|
/// divide or a right-shift or a compare-to-zero), `narrow_mode` should be
|
|
/// set to `ZeroExtend` or `SignExtend` as appropriate, and the resulting
|
|
/// register will be provided the extended value.
|
|
fn put_input_in_rs<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRS {
|
|
let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
|
|
if let Some((insn, 0)) = inputs.inst {
|
|
let op = ctx.data(insn).opcode();
|
|
|
|
if op == Opcode::Ishl {
|
|
let shiftee = InsnInput { insn, input: 0 };
|
|
let shift_amt = InsnInput { insn, input: 1 };
|
|
|
|
// Can we get the shift amount as an immediate?
|
|
if let Some(shiftimm) = input_to_shiftimm(ctx, shift_amt) {
|
|
let shiftee_bits = ty_bits(ctx.input_ty(insn, 0));
|
|
if shiftee_bits <= std::u8::MAX as usize {
|
|
let shiftimm = shiftimm.mask(shiftee_bits as u8);
|
|
let reg = put_input_in_reg(ctx, shiftee, narrow_mode);
|
|
return ResultRS::RegShift(reg, ShiftOpAndAmt::new(ShiftOp::LSL, shiftimm));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ResultRS::Reg(put_input_in_reg(ctx, input, narrow_mode))
|
|
}
|
|
|
|
/// Lower an instruction input to a reg or reg/shift, or reg/extend operand.
|
|
/// This does not actually codegen the source instruction; it just uses the
|
|
/// vreg into which the source instruction will generate its value.
|
|
///
|
|
/// See note on `put_input_in_rs` for a description of `narrow_mode`.
|
|
fn put_input_in_rse<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRSE {
|
|
let value = ctx.input_as_value(input.insn, input.input);
|
|
if let Some((val, extendop)) = get_as_extended_value(ctx, value, narrow_mode) {
|
|
let reg = put_value_in_reg(ctx, val, NarrowValueMode::None);
|
|
return ResultRSE::RegExtend(reg, extendop);
|
|
}
|
|
|
|
ResultRSE::from_rs(put_input_in_rs(ctx, input, narrow_mode))
|
|
}
|
|
|
|
fn get_as_extended_value<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
val: Value,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> Option<(Value, ExtendOp)> {
|
|
let inputs = ctx.get_value_as_source_or_const(val);
|
|
let (insn, n) = inputs.inst?;
|
|
if n != 0 {
|
|
return None;
|
|
}
|
|
let op = ctx.data(insn).opcode();
|
|
let out_ty = ctx.output_ty(insn, 0);
|
|
let out_bits = ty_bits(out_ty);
|
|
|
|
// Is this a zero-extend or sign-extend and can we handle that with a register-mode operator?
|
|
if op == Opcode::Uextend || op == Opcode::Sextend {
|
|
let sign_extend = op == Opcode::Sextend;
|
|
let inner_ty = ctx.input_ty(insn, 0);
|
|
let inner_bits = ty_bits(inner_ty);
|
|
assert!(inner_bits < out_bits);
|
|
if match (sign_extend, narrow_mode) {
|
|
// A single zero-extend or sign-extend is equal to itself.
|
|
(_, NarrowValueMode::None) => true,
|
|
// Two zero-extends or sign-extends in a row is equal to a single zero-extend or sign-extend.
|
|
(false, NarrowValueMode::ZeroExtend32) | (false, NarrowValueMode::ZeroExtend64) => true,
|
|
(true, NarrowValueMode::SignExtend32) | (true, NarrowValueMode::SignExtend64) => true,
|
|
// A zero-extend and a sign-extend in a row is not equal to a single zero-extend or sign-extend
|
|
(false, NarrowValueMode::SignExtend32) | (false, NarrowValueMode::SignExtend64) => {
|
|
false
|
|
}
|
|
(true, NarrowValueMode::ZeroExtend32) | (true, NarrowValueMode::ZeroExtend64) => false,
|
|
} {
|
|
let extendop = match (sign_extend, inner_bits) {
|
|
(true, 8) => ExtendOp::SXTB,
|
|
(false, 8) => ExtendOp::UXTB,
|
|
(true, 16) => ExtendOp::SXTH,
|
|
(false, 16) => ExtendOp::UXTH,
|
|
(true, 32) => ExtendOp::SXTW,
|
|
(false, 32) => ExtendOp::UXTW,
|
|
_ => unreachable!(),
|
|
};
|
|
return Some((ctx.input_as_value(insn, 0), extendop));
|
|
}
|
|
}
|
|
|
|
// If `out_ty` is smaller than 32 bits and we need to zero- or sign-extend,
|
|
// then get the result into a register and return an Extend-mode operand on
|
|
// that register.
|
|
if narrow_mode != NarrowValueMode::None
|
|
&& ((narrow_mode.is_32bit() && out_bits < 32) || (!narrow_mode.is_32bit() && out_bits < 64))
|
|
{
|
|
let extendop = match (narrow_mode, out_bits) {
|
|
(NarrowValueMode::SignExtend32, 1) | (NarrowValueMode::SignExtend64, 1) => {
|
|
ExtendOp::SXTB
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 1) | (NarrowValueMode::ZeroExtend64, 1) => {
|
|
ExtendOp::UXTB
|
|
}
|
|
(NarrowValueMode::SignExtend32, 8) | (NarrowValueMode::SignExtend64, 8) => {
|
|
ExtendOp::SXTB
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 8) | (NarrowValueMode::ZeroExtend64, 8) => {
|
|
ExtendOp::UXTB
|
|
}
|
|
(NarrowValueMode::SignExtend32, 16) | (NarrowValueMode::SignExtend64, 16) => {
|
|
ExtendOp::SXTH
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 16) | (NarrowValueMode::ZeroExtend64, 16) => {
|
|
ExtendOp::UXTH
|
|
}
|
|
(NarrowValueMode::SignExtend64, 32) => ExtendOp::SXTW,
|
|
(NarrowValueMode::ZeroExtend64, 32) => ExtendOp::UXTW,
|
|
_ => unreachable!(),
|
|
};
|
|
return Some((val, extendop));
|
|
}
|
|
None
|
|
}
|
|
|
|
pub(crate) fn put_input_in_rse_imm12<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRSEImm12 {
|
|
if let Some(imm_value) = input_to_const(ctx, input) {
|
|
if let Some(i) = Imm12::maybe_from_u64(imm_value) {
|
|
let out_ty_bits = ty_bits(ctx.input_ty(input.insn, input.input));
|
|
let is_negative = (i.bits as u64) & (1 << (cmp::max(out_ty_bits, 1) - 1)) != 0;
|
|
|
|
// This condition can happen if we matched a value that overflows the output type of
|
|
// its `iconst` when viewed as a signed value (i.e. iconst.i8 200).
|
|
// When that happens we need to lower as a negative value, which we cannot do here.
|
|
if !(narrow_mode.is_signed() && is_negative) {
|
|
return ResultRSEImm12::Imm12(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
ResultRSEImm12::from_rse(put_input_in_rse(ctx, input, narrow_mode))
|
|
}
|
|
|
|
pub(crate) fn put_input_in_rs_immlogic<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRSImmLogic {
|
|
if let Some(imm_value) = input_to_const(ctx, input) {
|
|
let ty = ctx.input_ty(input.insn, input.input);
|
|
let ty = if ty_bits(ty) < 32 { I32 } else { ty };
|
|
if let Some(i) = ImmLogic::maybe_from_u64(imm_value, ty) {
|
|
return ResultRSImmLogic::ImmLogic(i);
|
|
}
|
|
}
|
|
|
|
ResultRSImmLogic::from_rs(put_input_in_rs(ctx, input, narrow_mode))
|
|
}
|
|
|
|
pub(crate) fn put_input_in_reg_immshift<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
input: InsnInput,
|
|
shift_width_bits: usize,
|
|
) -> ResultRegImmShift {
|
|
if let Some(imm_value) = input_to_const(ctx, input) {
|
|
let imm_value = imm_value & ((shift_width_bits - 1) as u64);
|
|
if let Some(immshift) = ImmShift::maybe_from_u64(imm_value) {
|
|
return ResultRegImmShift::ImmShift(immshift);
|
|
}
|
|
}
|
|
|
|
ResultRegImmShift::Reg(put_input_in_reg(ctx, input, NarrowValueMode::None))
|
|
}
|
|
|
|
//============================================================================
|
|
// ALU instruction constructors.
|
|
|
|
pub(crate) fn alu_inst_imm12(op: ALUOp, rd: Writable<Reg>, rn: Reg, rm: ResultRSEImm12) -> Inst {
|
|
match rm {
|
|
ResultRSEImm12::Imm12(imm12) => Inst::AluRRImm12 {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
imm12,
|
|
},
|
|
ResultRSEImm12::Reg(rm) => Inst::AluRRR {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
},
|
|
ResultRSEImm12::RegShift(rm, shiftop) => Inst::AluRRRShift {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
shiftop,
|
|
},
|
|
ResultRSEImm12::RegExtend(rm, extendop) => Inst::AluRRRExtend {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
extendop,
|
|
},
|
|
}
|
|
}
|
|
|
|
pub(crate) fn alu_inst_immlogic(
|
|
op: ALUOp,
|
|
rd: Writable<Reg>,
|
|
rn: Reg,
|
|
rm: ResultRSImmLogic,
|
|
) -> Inst {
|
|
match rm {
|
|
ResultRSImmLogic::ImmLogic(imml) => Inst::AluRRImmLogic {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
imml,
|
|
},
|
|
ResultRSImmLogic::Reg(rm) => Inst::AluRRR {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
},
|
|
ResultRSImmLogic::RegShift(rm, shiftop) => Inst::AluRRRShift {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
shiftop,
|
|
},
|
|
}
|
|
}
|
|
|
|
pub(crate) fn alu_inst_immshift(
|
|
op: ALUOp,
|
|
rd: Writable<Reg>,
|
|
rn: Reg,
|
|
rm: ResultRegImmShift,
|
|
) -> Inst {
|
|
match rm {
|
|
ResultRegImmShift::ImmShift(immshift) => Inst::AluRRImmShift {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
immshift,
|
|
},
|
|
ResultRegImmShift::Reg(rm) => Inst::AluRRR {
|
|
alu_op: op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
},
|
|
}
|
|
}
|
|
|
|
//============================================================================
|
|
// Lowering: addressing mode support. Takes instruction directly, rather
|
|
// than an `InsnInput`, to do more introspection.
|
|
|
|
/// 32-bit addends that make up an address: an input, and an extension mode on that
|
|
/// input.
|
|
type AddressAddend32List = SmallVec<[(Reg, ExtendOp); 4]>;
|
|
/// 64-bit addends that make up an address: just an input.
|
|
type AddressAddend64List = SmallVec<[Reg; 4]>;
|
|
|
|
/// Collect all addends that feed into an address computation, with extend-modes
|
|
/// on each. Note that a load/store may have multiple address components (and
|
|
/// the CLIF semantics are that these components are added to form the final
|
|
/// address), but sometimes the CLIF that we receive still has arguments that
|
|
/// refer to `iadd` instructions. We also want to handle uextend/sextend below
|
|
/// the add(s).
|
|
///
|
|
/// We match any 64-bit add (and descend into its inputs), and we match any
|
|
/// 32-to-64-bit sign or zero extension. The returned addend-list will use
|
|
/// NarrowValueMode values to indicate how to extend each input:
|
|
///
|
|
/// - NarrowValueMode::None: the associated input is 64 bits wide; no extend.
|
|
/// - NarrowValueMode::SignExtend64: the associated input is 32 bits wide;
|
|
/// do a sign-extension.
|
|
/// - NarrowValueMode::ZeroExtend64: the associated input is 32 bits wide;
|
|
/// do a zero-extension.
|
|
///
|
|
/// We do not descend further into the inputs of extensions (unless it is a constant),
|
|
/// because supporting (e.g.) a 32-bit add that is later extended would require
|
|
/// additional masking of high-order bits, which is too complex. So, in essence, we
|
|
/// descend any number of adds from the roots, collecting all 64-bit address addends;
|
|
/// then possibly support extensions at these leaves.
|
|
fn collect_address_addends<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
roots: &[InsnInput],
|
|
) -> (AddressAddend64List, AddressAddend32List, i64) {
|
|
let mut result32: AddressAddend32List = SmallVec::new();
|
|
let mut result64: AddressAddend64List = SmallVec::new();
|
|
let mut offset: i64 = 0;
|
|
|
|
let mut workqueue: SmallVec<[InsnInput; 4]> = roots.iter().cloned().collect();
|
|
|
|
while let Some(input) = workqueue.pop() {
|
|
debug_assert!(ty_bits(ctx.input_ty(input.insn, input.input)) == 64);
|
|
if let Some((op, insn)) = maybe_input_insn_multi(
|
|
ctx,
|
|
input,
|
|
&[
|
|
Opcode::Uextend,
|
|
Opcode::Sextend,
|
|
Opcode::Iadd,
|
|
Opcode::Iconst,
|
|
],
|
|
) {
|
|
match op {
|
|
Opcode::Uextend | Opcode::Sextend if ty_bits(ctx.input_ty(insn, 0)) == 32 => {
|
|
let extendop = if op == Opcode::Uextend {
|
|
ExtendOp::UXTW
|
|
} else {
|
|
ExtendOp::SXTW
|
|
};
|
|
let extendee_input = InsnInput { insn, input: 0 };
|
|
// If the input is a zero-extension of a constant, add the value to the known
|
|
// offset.
|
|
// Only do this for zero-extension, as generating a sign-extended
|
|
// constant may be more instructions than using the 'SXTW' addressing mode.
|
|
if let (Some(insn), ExtendOp::UXTW) = (
|
|
maybe_input_insn(ctx, extendee_input, Opcode::Iconst),
|
|
extendop,
|
|
) {
|
|
let value = (ctx.get_constant(insn).unwrap() & 0xFFFF_FFFF_u64) as i64;
|
|
offset += value;
|
|
} else {
|
|
let reg = put_input_in_reg(ctx, extendee_input, NarrowValueMode::None);
|
|
result32.push((reg, extendop));
|
|
}
|
|
}
|
|
Opcode::Uextend | Opcode::Sextend => {
|
|
let reg = put_input_in_reg(ctx, input, NarrowValueMode::None);
|
|
result64.push(reg);
|
|
}
|
|
Opcode::Iadd => {
|
|
for input in 0..ctx.num_inputs(insn) {
|
|
let addend = InsnInput { insn, input };
|
|
workqueue.push(addend);
|
|
}
|
|
}
|
|
Opcode::Iconst => {
|
|
let value: i64 = ctx.get_constant(insn).unwrap() as i64;
|
|
offset += value;
|
|
}
|
|
_ => panic!("Unexpected opcode from maybe_input_insn_multi"),
|
|
}
|
|
} else {
|
|
let reg = put_input_in_reg(ctx, input, NarrowValueMode::ZeroExtend64);
|
|
result64.push(reg);
|
|
}
|
|
}
|
|
|
|
(result64, result32, offset)
|
|
}
|
|
|
|
/// Lower the address of a pair load or store.
|
|
pub(crate) fn lower_pair_address<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
roots: &[InsnInput],
|
|
offset: i32,
|
|
) -> PairAMode {
|
|
// Collect addends through an arbitrary tree of 32-to-64-bit sign/zero
|
|
// extends and addition ops. We update these as we consume address
|
|
// components, so they represent the remaining addends not yet handled.
|
|
let (mut addends64, mut addends32, args_offset) = collect_address_addends(ctx, roots);
|
|
let offset = args_offset + (offset as i64);
|
|
|
|
log::trace!(
|
|
"lower_pair_address: addends64 {:?}, addends32 {:?}, offset {}",
|
|
addends64,
|
|
addends32,
|
|
offset
|
|
);
|
|
|
|
// Pairs basically only have reg + imm formats so we only have to worry about those
|
|
|
|
let base_reg = if let Some(reg64) = addends64.pop() {
|
|
reg64
|
|
} else if let Some((reg32, extendop)) = addends32.pop() {
|
|
let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let signed = match extendop {
|
|
ExtendOp::SXTW => true,
|
|
ExtendOp::UXTW => false,
|
|
_ => unreachable!(),
|
|
};
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: reg32,
|
|
signed,
|
|
from_bits: 32,
|
|
to_bits: 64,
|
|
});
|
|
tmp.to_reg()
|
|
} else {
|
|
zero_reg()
|
|
};
|
|
|
|
let addr = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
ctx.emit(Inst::gen_move(addr, base_reg, I64));
|
|
|
|
// We have the base register, if we have any others, we need to add them
|
|
lower_add_addends(ctx, addr, addends64, addends32);
|
|
|
|
// Figure out what offset we should emit
|
|
let imm7 = SImm7Scaled::maybe_from_i64(offset, I64).unwrap_or_else(|| {
|
|
lower_add_immediate(ctx, addr, addr.to_reg(), offset);
|
|
SImm7Scaled::maybe_from_i64(0, I64).unwrap()
|
|
});
|
|
|
|
PairAMode::SignedOffset(addr.to_reg(), imm7)
|
|
}
|
|
|
|
/// Lower the address of a load or store.
|
|
pub(crate) fn lower_address<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
elem_ty: Type,
|
|
roots: &[InsnInput],
|
|
offset: i32,
|
|
) -> AMode {
|
|
// TODO: support base_reg + scale * index_reg. For this, we would need to pattern-match shl or
|
|
// mul instructions (Load/StoreComplex don't include scale factors).
|
|
|
|
// Collect addends through an arbitrary tree of 32-to-64-bit sign/zero
|
|
// extends and addition ops. We update these as we consume address
|
|
// components, so they represent the remaining addends not yet handled.
|
|
let (mut addends64, mut addends32, args_offset) = collect_address_addends(ctx, roots);
|
|
let mut offset = args_offset + (offset as i64);
|
|
|
|
log::trace!(
|
|
"lower_address: addends64 {:?}, addends32 {:?}, offset {}",
|
|
addends64,
|
|
addends32,
|
|
offset
|
|
);
|
|
|
|
// First, decide what the `AMode` will be. Take one extendee and one 64-bit
|
|
// reg, or two 64-bit regs, or a 64-bit reg and a 32-bit reg with extension,
|
|
// or some other combination as appropriate.
|
|
let memarg = if addends64.len() > 0 {
|
|
if addends32.len() > 0 {
|
|
let (reg32, extendop) = addends32.pop().unwrap();
|
|
let reg64 = addends64.pop().unwrap();
|
|
AMode::RegExtended(reg64, reg32, extendop)
|
|
} else if offset > 0 && offset < 0x1000 {
|
|
let reg64 = addends64.pop().unwrap();
|
|
let off = offset;
|
|
offset = 0;
|
|
AMode::RegOffset(reg64, off, elem_ty)
|
|
} else if addends64.len() >= 2 {
|
|
let reg1 = addends64.pop().unwrap();
|
|
let reg2 = addends64.pop().unwrap();
|
|
AMode::RegReg(reg1, reg2)
|
|
} else {
|
|
let reg1 = addends64.pop().unwrap();
|
|
AMode::reg(reg1)
|
|
}
|
|
} else
|
|
/* addends64.len() == 0 */
|
|
{
|
|
if addends32.len() > 0 {
|
|
let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let (reg1, extendop) = addends32.pop().unwrap();
|
|
let signed = match extendop {
|
|
ExtendOp::SXTW => true,
|
|
ExtendOp::UXTW => false,
|
|
_ => unreachable!(),
|
|
};
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: reg1,
|
|
signed,
|
|
from_bits: 32,
|
|
to_bits: 64,
|
|
});
|
|
if let Some((reg2, extendop)) = addends32.pop() {
|
|
AMode::RegExtended(tmp.to_reg(), reg2, extendop)
|
|
} else {
|
|
AMode::reg(tmp.to_reg())
|
|
}
|
|
} else
|
|
/* addends32.len() == 0 */
|
|
{
|
|
let off_reg = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
lower_constant_u64(ctx, off_reg, offset as u64);
|
|
offset = 0;
|
|
AMode::reg(off_reg.to_reg())
|
|
}
|
|
};
|
|
|
|
// At this point, if we have any remaining components, we need to allocate a
|
|
// temp, replace one of the registers in the AMode with the temp, and emit
|
|
// instructions to add together the remaining components. Return immediately
|
|
// if this is *not* the case.
|
|
if offset == 0 && addends32.len() == 0 && addends64.len() == 0 {
|
|
return memarg;
|
|
}
|
|
|
|
// Allocate the temp and shoehorn it into the AMode.
|
|
let addr = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let (reg, memarg) = match memarg {
|
|
AMode::RegExtended(r1, r2, extendop) => {
|
|
(r1, AMode::RegExtended(addr.to_reg(), r2, extendop))
|
|
}
|
|
AMode::RegOffset(r, off, ty) => (r, AMode::RegOffset(addr.to_reg(), off, ty)),
|
|
AMode::RegReg(r1, r2) => (r2, AMode::RegReg(addr.to_reg(), r1)),
|
|
AMode::UnsignedOffset(r, imm) => (r, AMode::UnsignedOffset(addr.to_reg(), imm)),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
// If there is any offset, load that first into `addr`, and add the `reg`
|
|
// that we kicked out of the `AMode`; otherwise, start with that reg.
|
|
if offset != 0 {
|
|
lower_add_immediate(ctx, addr, reg, offset)
|
|
} else {
|
|
ctx.emit(Inst::gen_move(addr, reg, I64));
|
|
}
|
|
|
|
// Now handle reg64 and reg32-extended components.
|
|
lower_add_addends(ctx, addr, addends64, addends32);
|
|
|
|
memarg
|
|
}
|
|
|
|
fn lower_add_addends<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
addends64: AddressAddend64List,
|
|
addends32: AddressAddend32List,
|
|
) {
|
|
for reg in addends64 {
|
|
// If the register is the stack reg, we must move it to another reg
|
|
// before adding it.
|
|
let reg = if reg == stack_reg() {
|
|
let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
ctx.emit(Inst::gen_move(tmp, stack_reg(), I64));
|
|
tmp.to_reg()
|
|
} else {
|
|
reg
|
|
};
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Add64,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
rm: reg,
|
|
});
|
|
}
|
|
for (reg, extendop) in addends32 {
|
|
assert!(reg != stack_reg());
|
|
ctx.emit(Inst::AluRRRExtend {
|
|
alu_op: ALUOp::Add64,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
rm: reg,
|
|
extendop,
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Adds into `rd` a signed imm pattern matching the best instruction for it.
|
|
// TODO: This function is duplicated in ctx.gen_add_imm
|
|
fn lower_add_immediate<C: LowerCtx<I = Inst>>(ctx: &mut C, dst: Writable<Reg>, src: Reg, imm: i64) {
|
|
// If we can fit offset or -offset in an imm12, use an add-imm
|
|
// Otherwise, lower the constant first then add.
|
|
if let Some(imm12) = Imm12::maybe_from_u64(imm as u64) {
|
|
ctx.emit(Inst::AluRRImm12 {
|
|
alu_op: ALUOp::Add64,
|
|
rd: dst,
|
|
rn: src,
|
|
imm12,
|
|
});
|
|
} else if let Some(imm12) = Imm12::maybe_from_u64(imm.wrapping_neg() as u64) {
|
|
ctx.emit(Inst::AluRRImm12 {
|
|
alu_op: ALUOp::Sub64,
|
|
rd: dst,
|
|
rn: src,
|
|
imm12,
|
|
});
|
|
} else {
|
|
lower_constant_u64(ctx, dst, imm as u64);
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Add64,
|
|
rd: dst,
|
|
rn: dst.to_reg(),
|
|
rm: src,
|
|
});
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_u64<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
value: u64,
|
|
) {
|
|
for inst in Inst::load_constant(rd, value) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_f32<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
value: f32,
|
|
) {
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
for inst in Inst::load_fp_constant32(rd, value.to_bits(), alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_f64<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
value: f64,
|
|
) {
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
for inst in Inst::load_fp_constant64(rd, value.to_bits(), alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_f128<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
value: u128,
|
|
) {
|
|
if value == 0 {
|
|
// Fast-track a common case. The general case, viz, calling `Inst::load_fp_constant128`,
|
|
// is potentially expensive.
|
|
ctx.emit(Inst::VecDupImm {
|
|
rd,
|
|
imm: ASIMDMovModImm::zero(ScalarSize::Size8),
|
|
invert: false,
|
|
size: VectorSize::Size8x16,
|
|
});
|
|
} else {
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
for inst in Inst::load_fp_constant128(rd, value, alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_splat_const<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
value: u64,
|
|
size: VectorSize,
|
|
) {
|
|
let (value, narrow_size) = match size.lane_size() {
|
|
ScalarSize::Size8 => (value as u8 as u64, ScalarSize::Size128),
|
|
ScalarSize::Size16 => (value as u16 as u64, ScalarSize::Size8),
|
|
ScalarSize::Size32 => (value as u32 as u64, ScalarSize::Size16),
|
|
ScalarSize::Size64 => (value, ScalarSize::Size32),
|
|
_ => unreachable!(),
|
|
};
|
|
let (value, size) = match Inst::get_replicated_vector_pattern(value as u128, narrow_size) {
|
|
Some((value, lane_size)) => (
|
|
value,
|
|
VectorSize::from_lane_size(lane_size, size.is_128bits()),
|
|
),
|
|
None => (value, size),
|
|
};
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
for inst in Inst::load_replicated_vector_pattern(rd, value, size, alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_condcode(cc: IntCC) -> Cond {
|
|
match cc {
|
|
IntCC::Equal => Cond::Eq,
|
|
IntCC::NotEqual => Cond::Ne,
|
|
IntCC::SignedGreaterThanOrEqual => Cond::Ge,
|
|
IntCC::SignedGreaterThan => Cond::Gt,
|
|
IntCC::SignedLessThanOrEqual => Cond::Le,
|
|
IntCC::SignedLessThan => Cond::Lt,
|
|
IntCC::UnsignedGreaterThanOrEqual => Cond::Hs,
|
|
IntCC::UnsignedGreaterThan => Cond::Hi,
|
|
IntCC::UnsignedLessThanOrEqual => Cond::Ls,
|
|
IntCC::UnsignedLessThan => Cond::Lo,
|
|
IntCC::Overflow => Cond::Vs,
|
|
IntCC::NotOverflow => Cond::Vc,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_fp_condcode(cc: FloatCC) -> Cond {
|
|
// Refer to `codegen/shared/src/condcodes.rs` and to the `FCMP` AArch64 docs.
|
|
// The FCMP instruction sets:
|
|
// NZCV
|
|
// - PCSR.NZCV = 0011 on UN (unordered),
|
|
// 0110 on EQ,
|
|
// 1000 on LT,
|
|
// 0010 on GT.
|
|
match cc {
|
|
// EQ | LT | GT. Vc => V clear.
|
|
FloatCC::Ordered => Cond::Vc,
|
|
// UN. Vs => V set.
|
|
FloatCC::Unordered => Cond::Vs,
|
|
// EQ. Eq => Z set.
|
|
FloatCC::Equal => Cond::Eq,
|
|
// UN | LT | GT. Ne => Z clear.
|
|
FloatCC::NotEqual => Cond::Ne,
|
|
// LT | GT.
|
|
FloatCC::OrderedNotEqual => unimplemented!(),
|
|
// UN | EQ
|
|
FloatCC::UnorderedOrEqual => unimplemented!(),
|
|
// LT. Mi => N set.
|
|
FloatCC::LessThan => Cond::Mi,
|
|
// LT | EQ. Ls => C clear or Z set.
|
|
FloatCC::LessThanOrEqual => Cond::Ls,
|
|
// GT. Gt => Z clear, N = V.
|
|
FloatCC::GreaterThan => Cond::Gt,
|
|
// GT | EQ. Ge => N = V.
|
|
FloatCC::GreaterThanOrEqual => Cond::Ge,
|
|
// UN | LT
|
|
FloatCC::UnorderedOrLessThan => unimplemented!(),
|
|
// UN | LT | EQ
|
|
FloatCC::UnorderedOrLessThanOrEqual => unimplemented!(),
|
|
// UN | GT
|
|
FloatCC::UnorderedOrGreaterThan => unimplemented!(),
|
|
// UN | GT | EQ
|
|
FloatCC::UnorderedOrGreaterThanOrEqual => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_vector_compare<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rd: Writable<Reg>,
|
|
mut rn: Reg,
|
|
mut rm: Reg,
|
|
ty: Type,
|
|
cond: Cond,
|
|
) -> CodegenResult<()> {
|
|
let is_float = ty.lane_type().is_float();
|
|
let size = VectorSize::from_ty(ty);
|
|
|
|
if is_float && (cond == Cond::Vc || cond == Cond::Vs) {
|
|
let tmp = ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
ctx.emit(Inst::VecRRR {
|
|
alu_op: VecALUOp::Fcmeq,
|
|
rd,
|
|
rn,
|
|
rm: rn,
|
|
size,
|
|
});
|
|
ctx.emit(Inst::VecRRR {
|
|
alu_op: VecALUOp::Fcmeq,
|
|
rd: tmp,
|
|
rn: rm,
|
|
rm,
|
|
size,
|
|
});
|
|
ctx.emit(Inst::VecRRR {
|
|
alu_op: VecALUOp::And,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
rm: tmp.to_reg(),
|
|
size,
|
|
});
|
|
|
|
if cond == Cond::Vs {
|
|
ctx.emit(Inst::VecMisc {
|
|
op: VecMisc2::Not,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
size,
|
|
});
|
|
}
|
|
} else {
|
|
// 'Less than' operations are implemented by swapping
|
|
// the order of operands and using the 'greater than'
|
|
// instructions.
|
|
// 'Not equal' is implemented with 'equal' and inverting
|
|
// the result.
|
|
let (alu_op, swap) = match (is_float, cond) {
|
|
(false, Cond::Eq) => (VecALUOp::Cmeq, false),
|
|
(false, Cond::Ne) => (VecALUOp::Cmeq, false),
|
|
(false, Cond::Ge) => (VecALUOp::Cmge, false),
|
|
(false, Cond::Gt) => (VecALUOp::Cmgt, false),
|
|
(false, Cond::Le) => (VecALUOp::Cmge, true),
|
|
(false, Cond::Lt) => (VecALUOp::Cmgt, true),
|
|
(false, Cond::Hs) => (VecALUOp::Cmhs, false),
|
|
(false, Cond::Hi) => (VecALUOp::Cmhi, false),
|
|
(false, Cond::Ls) => (VecALUOp::Cmhs, true),
|
|
(false, Cond::Lo) => (VecALUOp::Cmhi, true),
|
|
(true, Cond::Eq) => (VecALUOp::Fcmeq, false),
|
|
(true, Cond::Ne) => (VecALUOp::Fcmeq, false),
|
|
(true, Cond::Mi) => (VecALUOp::Fcmgt, true),
|
|
(true, Cond::Ls) => (VecALUOp::Fcmge, true),
|
|
(true, Cond::Ge) => (VecALUOp::Fcmge, false),
|
|
(true, Cond::Gt) => (VecALUOp::Fcmgt, false),
|
|
_ => {
|
|
return Err(CodegenError::Unsupported(format!(
|
|
"Unsupported {} SIMD vector comparison: {:?}",
|
|
if is_float {
|
|
"floating-point"
|
|
} else {
|
|
"integer"
|
|
},
|
|
cond
|
|
)))
|
|
}
|
|
};
|
|
|
|
if swap {
|
|
std::mem::swap(&mut rn, &mut rm);
|
|
}
|
|
|
|
ctx.emit(Inst::VecRRR {
|
|
alu_op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
size,
|
|
});
|
|
|
|
if cond == Cond::Ne {
|
|
ctx.emit(Inst::VecMisc {
|
|
op: VecMisc2::Not,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
size,
|
|
});
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Determines whether this condcode interprets inputs as signed or unsigned. See the
|
|
/// documentation for the `icmp` instruction in cranelift-codegen/meta/src/shared/instructions.rs
|
|
/// for further insights into this.
|
|
pub(crate) fn condcode_is_signed(cc: IntCC) -> bool {
|
|
match cc {
|
|
IntCC::Equal
|
|
| IntCC::UnsignedGreaterThanOrEqual
|
|
| IntCC::UnsignedGreaterThan
|
|
| IntCC::UnsignedLessThanOrEqual
|
|
| IntCC::UnsignedLessThan
|
|
| IntCC::NotEqual => false,
|
|
IntCC::SignedGreaterThanOrEqual
|
|
| IntCC::SignedGreaterThan
|
|
| IntCC::SignedLessThanOrEqual
|
|
| IntCC::SignedLessThan
|
|
| IntCC::Overflow
|
|
| IntCC::NotOverflow => true,
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
// Helpers for instruction lowering.
|
|
|
|
pub(crate) fn choose_32_64<T: Copy>(ty: Type, op32: T, op64: T) -> T {
|
|
let bits = ty_bits(ty);
|
|
if bits <= 32 {
|
|
op32
|
|
} else if bits == 64 {
|
|
op64
|
|
} else {
|
|
panic!("choose_32_64 on > 64 bits!")
|
|
}
|
|
}
|
|
|
|
/// Checks for an instance of `op` feeding the given input.
|
|
pub(crate) fn maybe_input_insn<C: LowerCtx<I = Inst>>(
|
|
c: &mut C,
|
|
input: InsnInput,
|
|
op: Opcode,
|
|
) -> Option<IRInst> {
|
|
let inputs = c.get_input_as_source_or_const(input.insn, input.input);
|
|
log::trace!(
|
|
"maybe_input_insn: input {:?} has options {:?}; looking for op {:?}",
|
|
input,
|
|
inputs,
|
|
op
|
|
);
|
|
if let Some((src_inst, _)) = inputs.inst {
|
|
let data = c.data(src_inst);
|
|
log::trace!(" -> input inst {:?}", data);
|
|
if data.opcode() == op {
|
|
return Some(src_inst);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Checks for an instance of any one of `ops` feeding the given input.
|
|
pub(crate) fn maybe_input_insn_multi<C: LowerCtx<I = Inst>>(
|
|
c: &mut C,
|
|
input: InsnInput,
|
|
ops: &[Opcode],
|
|
) -> Option<(Opcode, IRInst)> {
|
|
for &op in ops {
|
|
if let Some(inst) = maybe_input_insn(c, input, op) {
|
|
return Some((op, inst));
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Checks for an instance of `op` feeding the given input, possibly via a conversion `conv` (e.g.,
|
|
/// Bint or a bitcast).
|
|
///
|
|
/// FIXME cfallin 2020-03-30: this is really ugly. Factor out tree-matching stuff and make it
|
|
/// a bit more generic.
|
|
pub(crate) fn maybe_input_insn_via_conv<C: LowerCtx<I = Inst>>(
|
|
c: &mut C,
|
|
input: InsnInput,
|
|
op: Opcode,
|
|
conv: Opcode,
|
|
) -> Option<IRInst> {
|
|
let inputs = c.get_input_as_source_or_const(input.insn, input.input);
|
|
if let Some((src_inst, _)) = inputs.inst {
|
|
let data = c.data(src_inst);
|
|
if data.opcode() == op {
|
|
return Some(src_inst);
|
|
}
|
|
if data.opcode() == conv {
|
|
let inputs = c.get_input_as_source_or_const(src_inst, 0);
|
|
if let Some((src_inst, _)) = inputs.inst {
|
|
let data = c.data(src_inst);
|
|
if data.opcode() == op {
|
|
return Some(src_inst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Specifies what [lower_icmp] should do when lowering
|
|
#[derive(Debug, Clone, PartialEq)]
|
|
pub(crate) enum IcmpOutput {
|
|
/// Lowers the comparison into a cond code, discarding the results. The cond code emitted can
|
|
/// be checked in the resulting [IcmpResult].
|
|
CondCode,
|
|
/// Materializes the results into a register. This may overwrite any flags previously set.
|
|
Register(Writable<Reg>),
|
|
}
|
|
|
|
impl IcmpOutput {
|
|
pub fn reg(&self) -> Option<Writable<Reg>> {
|
|
match self {
|
|
IcmpOutput::CondCode => None,
|
|
IcmpOutput::Register(reg) => Some(*reg),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The output of an Icmp lowering.
|
|
#[derive(Debug, Clone, PartialEq)]
|
|
pub(crate) enum IcmpResult {
|
|
/// The result was output into the given [Cond]. Callers may perform operations using this [Cond]
|
|
/// and its inverse, other [Cond]'s are not guaranteed to be correct.
|
|
CondCode(Cond),
|
|
/// The result was materialized into the output register.
|
|
Register,
|
|
}
|
|
|
|
impl IcmpResult {
|
|
pub fn unwrap_cond(&self) -> Cond {
|
|
match self {
|
|
IcmpResult::CondCode(c) => *c,
|
|
_ => panic!("Unwrapped cond, but IcmpResult was {:?}", self),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Lower an icmp comparision
|
|
///
|
|
/// We can lower into the status flags, or materialize the result into a register
|
|
/// This is controlled by the `output` parameter.
|
|
pub(crate) fn lower_icmp<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
insn: IRInst,
|
|
condcode: IntCC,
|
|
output: IcmpOutput,
|
|
) -> CodegenResult<IcmpResult> {
|
|
log::trace!(
|
|
"lower_icmp: insn {}, condcode: {}, output: {:?}",
|
|
insn,
|
|
condcode,
|
|
output
|
|
);
|
|
|
|
let rd = output.reg().unwrap_or(writable_zero_reg());
|
|
let inputs = insn_inputs(ctx, insn);
|
|
let cond = lower_condcode(condcode);
|
|
let is_signed = condcode_is_signed(condcode);
|
|
let ty = ctx.input_ty(insn, 0);
|
|
let bits = ty_bits(ty);
|
|
let narrow_mode = match (bits <= 32, is_signed) {
|
|
(true, true) => NarrowValueMode::SignExtend32,
|
|
(true, false) => NarrowValueMode::ZeroExtend32,
|
|
(false, true) => NarrowValueMode::SignExtend64,
|
|
(false, false) => NarrowValueMode::ZeroExtend64,
|
|
};
|
|
let mut should_materialize = output.reg().is_some();
|
|
|
|
let out_condcode = if ty == I128 {
|
|
let lhs = put_input_in_regs(ctx, inputs[0]);
|
|
let rhs = put_input_in_regs(ctx, inputs[1]);
|
|
|
|
let tmp1 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let tmp2 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
|
|
match condcode {
|
|
IntCC::Equal | IntCC::NotEqual => {
|
|
// eor tmp1, lhs_lo, rhs_lo
|
|
// eor tmp2, lhs_hi, rhs_hi
|
|
// adds xzr, tmp1, tmp2
|
|
// cset dst, {eq, ne}
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Eor64,
|
|
rd: tmp1,
|
|
rn: lhs.regs()[0],
|
|
rm: rhs.regs()[0],
|
|
});
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Eor64,
|
|
rd: tmp2,
|
|
rn: lhs.regs()[1],
|
|
rm: rhs.regs()[1],
|
|
});
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::AddS64,
|
|
rd: writable_zero_reg(),
|
|
rn: tmp1.to_reg(),
|
|
rm: tmp2.to_reg(),
|
|
});
|
|
}
|
|
IntCC::Overflow | IntCC::NotOverflow => {
|
|
// We can do an 128bit add while throwing away the results
|
|
// and check the overflow flags at the end.
|
|
//
|
|
// adds xzr, lhs_lo, rhs_lo
|
|
// adcs xzr, lhs_hi, rhs_hi
|
|
// cset dst, {vs, vc}
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::AddS64,
|
|
rd: writable_zero_reg(),
|
|
rn: lhs.regs()[0],
|
|
rm: rhs.regs()[0],
|
|
});
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::AdcS64,
|
|
rd: writable_zero_reg(),
|
|
rn: lhs.regs()[1],
|
|
rm: rhs.regs()[1],
|
|
});
|
|
}
|
|
_ => {
|
|
// cmp lhs_lo, rhs_lo
|
|
// cset tmp1, unsigned_cond
|
|
// cmp lhs_hi, rhs_hi
|
|
// cset tmp2, cond
|
|
// csel dst, tmp1, tmp2, eq
|
|
|
|
let rd = output.reg().unwrap_or(tmp1);
|
|
let unsigned_cond = lower_condcode(condcode.unsigned());
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::SubS64,
|
|
rd: writable_zero_reg(),
|
|
rn: lhs.regs()[0],
|
|
rm: rhs.regs()[0],
|
|
});
|
|
materialize_bool_result(ctx, insn, tmp1, unsigned_cond);
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::SubS64,
|
|
rd: writable_zero_reg(),
|
|
rn: lhs.regs()[1],
|
|
rm: rhs.regs()[1],
|
|
});
|
|
materialize_bool_result(ctx, insn, tmp2, cond);
|
|
ctx.emit(Inst::CSel {
|
|
cond: Cond::Eq,
|
|
rd,
|
|
rn: tmp1.to_reg(),
|
|
rm: tmp2.to_reg(),
|
|
});
|
|
|
|
if output == IcmpOutput::CondCode {
|
|
// We only need to guarantee that the flags for `cond` are correct, so we can
|
|
// compare rd with 0 or 1
|
|
|
|
// If we are doing compare or equal, we want to compare with 1 instead of zero
|
|
if condcode.without_equal() != condcode {
|
|
lower_constant_u64(ctx, tmp2, 1);
|
|
}
|
|
|
|
let xzr = zero_reg();
|
|
let rd = rd.to_reg();
|
|
let tmp2 = tmp2.to_reg();
|
|
let (rn, rm) = match condcode {
|
|
IntCC::SignedGreaterThanOrEqual => (rd, tmp2),
|
|
IntCC::UnsignedGreaterThanOrEqual => (rd, tmp2),
|
|
IntCC::SignedLessThanOrEqual => (tmp2, rd),
|
|
IntCC::UnsignedLessThanOrEqual => (tmp2, rd),
|
|
IntCC::SignedGreaterThan => (rd, xzr),
|
|
IntCC::UnsignedGreaterThan => (rd, xzr),
|
|
IntCC::SignedLessThan => (xzr, rd),
|
|
IntCC::UnsignedLessThan => (xzr, rd),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::SubS64,
|
|
rd: writable_zero_reg(),
|
|
rn,
|
|
rm,
|
|
});
|
|
}
|
|
|
|
// Prevent a second materialize_bool_result to be emitted at the end of the function
|
|
should_materialize = false;
|
|
}
|
|
}
|
|
cond
|
|
} else if ty.is_vector() {
|
|
assert_ne!(output, IcmpOutput::CondCode);
|
|
should_materialize = false;
|
|
|
|
let rn = put_input_in_reg(ctx, inputs[0], narrow_mode);
|
|
let rm = put_input_in_reg(ctx, inputs[1], narrow_mode);
|
|
lower_vector_compare(ctx, rd, rn, rm, ty, cond)?;
|
|
cond
|
|
} else {
|
|
let rn = put_input_in_reg(ctx, inputs[0], narrow_mode);
|
|
let rm = put_input_in_rse_imm12(ctx, inputs[1], narrow_mode);
|
|
|
|
let is_overflow = condcode == IntCC::Overflow || condcode == IntCC::NotOverflow;
|
|
let is_small_type = ty == I8 || ty == I16;
|
|
let (cond, rn, rm) = if is_overflow && is_small_type {
|
|
// Overflow checks for non native types require additional instructions, other than
|
|
// just the extend op.
|
|
//
|
|
// TODO: Codegen improvements: Merge the second sxt{h,b} into the following sub instruction.
|
|
//
|
|
// sxt{h,b} w0, w0
|
|
// sxt{h,b} w1, w1
|
|
// sub w0, w0, w1
|
|
// cmp w0, w0, sxt{h,b}
|
|
//
|
|
// The result of this comparison is either the EQ or NE condition code, so we need to
|
|
// signal that to the caller
|
|
|
|
let extend_op = if ty == I8 {
|
|
ExtendOp::SXTB
|
|
} else {
|
|
ExtendOp::SXTH
|
|
};
|
|
let tmp1 = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(alu_inst_imm12(ALUOp::Sub32, tmp1, rn, rm));
|
|
|
|
let out_cond = match condcode {
|
|
IntCC::Overflow => Cond::Ne,
|
|
IntCC::NotOverflow => Cond::Eq,
|
|
_ => unreachable!(),
|
|
};
|
|
(
|
|
out_cond,
|
|
tmp1.to_reg(),
|
|
ResultRSEImm12::RegExtend(tmp1.to_reg(), extend_op),
|
|
)
|
|
} else {
|
|
(cond, rn, rm)
|
|
};
|
|
|
|
let alu_op = choose_32_64(ty, ALUOp::SubS32, ALUOp::SubS64);
|
|
ctx.emit(alu_inst_imm12(alu_op, writable_zero_reg(), rn, rm));
|
|
cond
|
|
};
|
|
|
|
// Most of the comparisons above produce flags by default, if the caller requested the result
|
|
// in a register we materialize those flags into a register. Some branches do end up producing
|
|
// the result as a register by default, so we ignore those.
|
|
if should_materialize {
|
|
materialize_bool_result(ctx, insn, rd, cond);
|
|
}
|
|
|
|
Ok(match output {
|
|
// We currently never emit a different register than what was asked for
|
|
IcmpOutput::Register(_) => IcmpResult::Register,
|
|
IcmpOutput::CondCode => IcmpResult::CondCode(out_condcode),
|
|
})
|
|
}
|
|
|
|
pub(crate) fn lower_fcmp_or_ffcmp_to_flags<C: LowerCtx<I = Inst>>(ctx: &mut C, insn: IRInst) {
|
|
let ty = ctx.input_ty(insn, 0);
|
|
let bits = ty_bits(ty);
|
|
let inputs = [InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }];
|
|
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
|
|
let rm = put_input_in_reg(ctx, inputs[1], NarrowValueMode::None);
|
|
match bits {
|
|
32 => {
|
|
ctx.emit(Inst::FpuCmp32 { rn, rm });
|
|
}
|
|
64 => {
|
|
ctx.emit(Inst::FpuCmp64 { rn, rm });
|
|
}
|
|
_ => panic!("Unknown float size"),
|
|
}
|
|
}
|
|
|
|
/// Materialize a boolean value into a register from the flags
|
|
/// (e.g set by a comparison).
|
|
/// A 0 / -1 (all-ones) result as expected for bool operations.
|
|
pub(crate) fn materialize_bool_result<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
insn: IRInst,
|
|
rd: Writable<Reg>,
|
|
cond: Cond,
|
|
) {
|
|
// A boolean is 0 / -1; if output width is > 1 use `csetm`,
|
|
// otherwise use `cset`.
|
|
if ty_bits(ctx.output_ty(insn, 0)) > 1 {
|
|
ctx.emit(Inst::CSetm { rd, cond });
|
|
} else {
|
|
ctx.emit(Inst::CSet { rd, cond });
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_shift_amt<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
amt_input: InsnInput,
|
|
dst_ty: Type,
|
|
tmp_reg: Writable<Reg>,
|
|
) -> ResultRegImmShift {
|
|
let amt_ty = ctx.input_ty(amt_input.insn, amt_input.input);
|
|
|
|
match (dst_ty, amt_ty) {
|
|
// When shifting for amounts larger than the size of the type, the CLIF shift
|
|
// instructions implement a "wrapping" behaviour, such that an i8 << 8 is
|
|
// equivalent to i8 << 0
|
|
//
|
|
// On i32 and i64 types this matches what the aarch64 spec does, but on smaller
|
|
// types (i16, i8) we need to do this manually, so we wrap the shift amount
|
|
// with an AND instruction
|
|
(I16 | I8, _) => {
|
|
// We can ignore the top half of the shift amount register if the type is I128
|
|
let amt_reg = put_input_in_regs(ctx, amt_input).regs()[0];
|
|
let mask = (ty_bits(dst_ty) - 1) as u64;
|
|
ctx.emit(Inst::AluRRImmLogic {
|
|
alu_op: ALUOp::And32,
|
|
rd: tmp_reg,
|
|
rn: amt_reg,
|
|
imml: ImmLogic::maybe_from_u64(mask, I32).unwrap(),
|
|
});
|
|
ResultRegImmShift::Reg(tmp_reg.to_reg())
|
|
}
|
|
// TODO: We can use immlogic for i128 types here
|
|
(I128, _) | (_, I128) => {
|
|
// For I128 shifts, we need a register without immlogic
|
|
ResultRegImmShift::Reg(put_input_in_regs(ctx, amt_input).regs()[0])
|
|
}
|
|
_ => put_input_in_reg_immshift(ctx, amt_input, ty_bits(dst_ty)),
|
|
}
|
|
}
|
|
|
|
/// This is target-word-size dependent. And it excludes booleans and reftypes.
|
|
pub(crate) fn is_valid_atomic_transaction_ty(ty: Type) -> bool {
|
|
match ty {
|
|
I8 | I16 | I32 | I64 => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn emit_atomic_load<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
rt: Writable<Reg>,
|
|
insn: IRInst,
|
|
) {
|
|
assert!(ctx.data(insn).opcode() == Opcode::AtomicLoad);
|
|
let inputs = insn_inputs(ctx, insn);
|
|
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
|
|
let access_ty = ctx.output_ty(insn, 0);
|
|
assert!(is_valid_atomic_transaction_ty(access_ty));
|
|
// We're ignoring the result type of the load because the LoadAcquire will
|
|
// explicitly zero extend to the nearest word, and also zero the high half
|
|
// of an X register.
|
|
ctx.emit(Inst::LoadAcquire { access_ty, rt, rn });
|
|
}
|
|
|
|
fn load_op_to_ty(op: Opcode) -> Option<Type> {
|
|
match op {
|
|
Opcode::Sload8 | Opcode::Uload8 | Opcode::Sload8Complex | Opcode::Uload8Complex => Some(I8),
|
|
Opcode::Sload16 | Opcode::Uload16 | Opcode::Sload16Complex | Opcode::Uload16Complex => {
|
|
Some(I16)
|
|
}
|
|
Opcode::Sload32 | Opcode::Uload32 | Opcode::Sload32Complex | Opcode::Uload32Complex => {
|
|
Some(I32)
|
|
}
|
|
Opcode::Load | Opcode::LoadComplex => None,
|
|
Opcode::Sload8x8 | Opcode::Uload8x8 | Opcode::Sload8x8Complex | Opcode::Uload8x8Complex => {
|
|
Some(I8X8)
|
|
}
|
|
Opcode::Sload16x4
|
|
| Opcode::Uload16x4
|
|
| Opcode::Sload16x4Complex
|
|
| Opcode::Uload16x4Complex => Some(I16X4),
|
|
Opcode::Sload32x2
|
|
| Opcode::Uload32x2
|
|
| Opcode::Sload32x2Complex
|
|
| Opcode::Uload32x2Complex => Some(I32X2),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Helper to lower a load instruction; this is used in several places, because
|
|
/// a load can sometimes be merged into another operation.
|
|
pub(crate) fn lower_load<
|
|
C: LowerCtx<I = Inst>,
|
|
F: FnMut(&mut C, ValueRegs<Writable<Reg>>, Type, AMode) -> CodegenResult<()>,
|
|
>(
|
|
ctx: &mut C,
|
|
ir_inst: IRInst,
|
|
inputs: &[InsnInput],
|
|
output: InsnOutput,
|
|
mut f: F,
|
|
) -> CodegenResult<()> {
|
|
let op = ctx.data(ir_inst).opcode();
|
|
|
|
let elem_ty = load_op_to_ty(op).unwrap_or_else(|| ctx.output_ty(ir_inst, 0));
|
|
|
|
let off = ctx.data(ir_inst).load_store_offset().unwrap();
|
|
let mem = lower_address(ctx, elem_ty, &inputs[..], off);
|
|
let rd = get_output_reg(ctx, output);
|
|
|
|
f(ctx, rd, elem_ty, mem)
|
|
}
|
|
|
|
pub(crate) fn emit_shl_i128<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
src: ValueRegs<Reg>,
|
|
dst: ValueRegs<Writable<Reg>>,
|
|
amt: Reg,
|
|
) {
|
|
let src_lo = src.regs()[0];
|
|
let src_hi = src.regs()[1];
|
|
let dst_lo = dst.regs()[0];
|
|
let dst_hi = dst.regs()[1];
|
|
|
|
// mvn inv_amt, amt
|
|
// lsr tmp1, src_lo, #1
|
|
// lsl tmp2, src_hi, amt
|
|
// lsr tmp1, tmp1, inv_amt
|
|
// lsl tmp3, src_lo, amt
|
|
// tst amt, #0x40
|
|
// orr tmp2, tmp2, tmp1
|
|
// csel dst_hi, tmp3, tmp2, ne
|
|
// csel dst_lo, xzr, tmp3, ne
|
|
|
|
let xzr = writable_zero_reg();
|
|
let inv_amt = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let tmp1 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let tmp2 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let tmp3 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::OrrNot32,
|
|
rd: inv_amt,
|
|
rn: xzr.to_reg(),
|
|
rm: amt,
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRImmShift {
|
|
alu_op: ALUOp::Lsr64,
|
|
rd: tmp1,
|
|
rn: src_lo,
|
|
immshift: ImmShift::maybe_from_u64(1).unwrap(),
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Lsl64,
|
|
rd: tmp2,
|
|
rn: src_hi,
|
|
rm: amt,
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Lsr64,
|
|
rd: tmp1,
|
|
rn: tmp1.to_reg(),
|
|
rm: inv_amt.to_reg(),
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Lsl64,
|
|
rd: tmp3,
|
|
rn: src_lo,
|
|
rm: amt,
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRImmLogic {
|
|
alu_op: ALUOp::AndS64,
|
|
rd: xzr,
|
|
rn: amt,
|
|
imml: ImmLogic::maybe_from_u64(64, I64).unwrap(),
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Orr64,
|
|
rd: tmp2,
|
|
rn: tmp2.to_reg(),
|
|
rm: tmp1.to_reg(),
|
|
});
|
|
|
|
ctx.emit(Inst::CSel {
|
|
cond: Cond::Ne,
|
|
rd: dst_hi,
|
|
rn: tmp3.to_reg(),
|
|
rm: tmp2.to_reg(),
|
|
});
|
|
|
|
ctx.emit(Inst::CSel {
|
|
cond: Cond::Ne,
|
|
rd: dst_lo,
|
|
rn: xzr.to_reg(),
|
|
rm: tmp3.to_reg(),
|
|
});
|
|
}
|
|
|
|
pub(crate) fn emit_shr_i128<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
src: ValueRegs<Reg>,
|
|
dst: ValueRegs<Writable<Reg>>,
|
|
amt: Reg,
|
|
is_signed: bool,
|
|
) {
|
|
let src_lo = src.regs()[0];
|
|
let src_hi = src.regs()[1];
|
|
let dst_lo = dst.regs()[0];
|
|
let dst_hi = dst.regs()[1];
|
|
|
|
// mvn inv_amt, amt
|
|
// lsl tmp1, src_lo, #1
|
|
// lsr tmp2, src_hi, amt
|
|
// lsl tmp1, tmp1, inv_amt
|
|
// lsr/asr tmp3, src_lo, amt
|
|
// tst amt, #0x40
|
|
// orr tmp2, tmp2, tmp1
|
|
//
|
|
// if signed:
|
|
// asr tmp4, src_hi, #63
|
|
// csel dst_hi, tmp4, tmp3, ne
|
|
// else:
|
|
// csel dst_hi, xzr, tmp3, ne
|
|
//
|
|
// csel dst_lo, tmp3, tmp2, ne
|
|
|
|
let xzr = writable_zero_reg();
|
|
let inv_amt = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let tmp1 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let tmp2 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let tmp3 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let tmp4 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
|
|
let shift_op = if is_signed {
|
|
ALUOp::Asr64
|
|
} else {
|
|
ALUOp::Lsr64
|
|
};
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::OrrNot32,
|
|
rd: inv_amt,
|
|
rn: xzr.to_reg(),
|
|
rm: amt,
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRImmShift {
|
|
alu_op: ALUOp::Lsl64,
|
|
rd: tmp1,
|
|
rn: src_hi,
|
|
immshift: ImmShift::maybe_from_u64(1).unwrap(),
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Lsr64,
|
|
rd: tmp2,
|
|
rn: src_lo,
|
|
rm: amt,
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Lsl64,
|
|
rd: tmp1,
|
|
rn: tmp1.to_reg(),
|
|
rm: inv_amt.to_reg(),
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: shift_op,
|
|
rd: tmp3,
|
|
rn: src_hi,
|
|
rm: amt,
|
|
});
|
|
|
|
ctx.emit(Inst::AluRRImmLogic {
|
|
alu_op: ALUOp::AndS64,
|
|
rd: xzr,
|
|
rn: amt,
|
|
imml: ImmLogic::maybe_from_u64(64, I64).unwrap(),
|
|
});
|
|
|
|
if is_signed {
|
|
ctx.emit(Inst::AluRRImmShift {
|
|
alu_op: ALUOp::Asr64,
|
|
rd: tmp4,
|
|
rn: src_hi,
|
|
immshift: ImmShift::maybe_from_u64(63).unwrap(),
|
|
});
|
|
}
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Orr64,
|
|
rd: tmp2,
|
|
rn: tmp2.to_reg(),
|
|
rm: tmp1.to_reg(),
|
|
});
|
|
|
|
ctx.emit(Inst::CSel {
|
|
cond: Cond::Ne,
|
|
rd: dst_hi,
|
|
rn: if is_signed { tmp4 } else { xzr }.to_reg(),
|
|
rm: tmp3.to_reg(),
|
|
});
|
|
|
|
ctx.emit(Inst::CSel {
|
|
cond: Cond::Ne,
|
|
rd: dst_lo,
|
|
rn: tmp3.to_reg(),
|
|
rm: tmp2.to_reg(),
|
|
});
|
|
}
|
|
|
|
pub(crate) fn emit_clz_i128<C: LowerCtx<I = Inst>>(
|
|
ctx: &mut C,
|
|
src: ValueRegs<Reg>,
|
|
dst: ValueRegs<Writable<Reg>>,
|
|
) {
|
|
let src_lo = src.regs()[0];
|
|
let src_hi = src.regs()[1];
|
|
let dst_lo = dst.regs()[0];
|
|
let dst_hi = dst.regs()[1];
|
|
|
|
// clz dst_hi, src_hi
|
|
// clz dst_lo, src_lo
|
|
// lsr tmp, dst_hi, #6
|
|
// madd dst_lo, dst_lo, tmp, dst_hi
|
|
// mov dst_hi, 0
|
|
|
|
let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
|
|
ctx.emit(Inst::BitRR {
|
|
rd: dst_hi,
|
|
rn: src_hi,
|
|
op: BitOp::Clz64,
|
|
});
|
|
ctx.emit(Inst::BitRR {
|
|
rd: dst_lo,
|
|
rn: src_lo,
|
|
op: BitOp::Clz64,
|
|
});
|
|
ctx.emit(Inst::AluRRImmShift {
|
|
alu_op: ALUOp::Lsr64,
|
|
rd: tmp,
|
|
rn: dst_hi.to_reg(),
|
|
immshift: ImmShift::maybe_from_u64(6).unwrap(),
|
|
});
|
|
ctx.emit(Inst::AluRRRR {
|
|
alu_op: ALUOp3::MAdd64,
|
|
rd: dst_lo,
|
|
rn: dst_lo.to_reg(),
|
|
rm: tmp.to_reg(),
|
|
ra: dst_hi.to_reg(),
|
|
});
|
|
lower_constant_u64(ctx, dst_hi, 0);
|
|
}
|
|
|
|
//=============================================================================
|
|
// Lowering-backend trait implementation.
|
|
|
|
impl LowerBackend for AArch64Backend {
|
|
type MInst = Inst;
|
|
|
|
fn lower<C: LowerCtx<I = Inst>>(&self, ctx: &mut C, ir_inst: IRInst) -> CodegenResult<()> {
|
|
lower_inst::lower_insn_to_regs(ctx, ir_inst, &self.flags, &self.isa_flags)
|
|
}
|
|
|
|
fn lower_branch_group<C: LowerCtx<I = Inst>>(
|
|
&self,
|
|
ctx: &mut C,
|
|
branches: &[IRInst],
|
|
targets: &[MachLabel],
|
|
) -> CodegenResult<()> {
|
|
lower_inst::lower_branch(ctx, branches, targets)
|
|
}
|
|
|
|
fn maybe_pinned_reg(&self) -> Option<Reg> {
|
|
Some(xreg(PINNED_REG))
|
|
}
|
|
}
|