* cranelift: Remove of/nof overflow flags from icmp Neither Wasmtime nor cg-clif use these flags under any circumstances. From discussion on #3060 I see it's long been unclear what purpose these flags served. Fixes #3060, fixes #4406, and fixes #4875... by deleting all the code that could have been buggy. This changes the cranelift-fuzzgen input format by removing some IntCC options, so I've gone ahead and enabled I128 icmp tests at the same time. Since only the of/nof cases were failing before, I expect these to work. * Restore trapif tests It's still useful to validate that iadd_ifcout's iflags result can be forwarded correctly to trapif, and for that purpose it doesn't really matter what condition code is checked.
1426 lines
48 KiB
Rust
1426 lines
48 KiB
Rust
//! Lowering rules for AArch64.
|
|
//!
|
|
//! TODO: opportunities for better code generation:
|
|
//!
|
|
//! - Smarter use of addressing modes. Recognize a+SCALE*b patterns. Recognize
|
|
//! pre/post-index opportunities.
|
|
//!
|
|
//! - Floating-point immediates (FIMM instruction).
|
|
|
|
use super::lower_inst;
|
|
use crate::ir::condcodes::{FloatCC, IntCC};
|
|
use crate::ir::types::*;
|
|
use crate::ir::Inst as IRInst;
|
|
use crate::ir::{Opcode, Type, Value};
|
|
use crate::isa::aarch64::inst::*;
|
|
use crate::isa::aarch64::AArch64Backend;
|
|
use crate::machinst::lower::*;
|
|
use crate::machinst::{Reg, Writable};
|
|
use crate::{machinst::*, trace};
|
|
use crate::{CodegenError, CodegenResult};
|
|
use smallvec::{smallvec, SmallVec};
|
|
use std::cmp;
|
|
|
|
pub mod isle;
|
|
|
|
//============================================================================
|
|
// Result enum types.
|
|
//
|
|
// Lowering of a given value results in one of these enums, depending on the
|
|
// modes in which we can accept the value.
|
|
|
|
/// A lowering result: register, register-shift. An SSA value can always be
|
|
/// lowered into one of these options; the register form is the fallback.
|
|
#[derive(Clone, Debug)]
|
|
enum ResultRS {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
}
|
|
|
|
/// A lowering result: register, register-shift, register-extend. An SSA value can always be
|
|
/// lowered into one of these options; the register form is the fallback.
|
|
#[derive(Clone, Debug)]
|
|
enum ResultRSE {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
RegExtend(Reg, ExtendOp),
|
|
}
|
|
|
|
impl ResultRSE {
|
|
fn from_rs(rs: ResultRS) -> ResultRSE {
|
|
match rs {
|
|
ResultRS::Reg(r) => ResultRSE::Reg(r),
|
|
ResultRS::RegShift(r, s) => ResultRSE::RegShift(r, s),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A lowering result: register, register-shift, register-extend, or 12-bit immediate form.
|
|
/// An SSA value can always be lowered into one of these options; the register form is the
|
|
/// fallback.
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) enum ResultRSEImm12 {
|
|
Reg(Reg),
|
|
RegShift(Reg, ShiftOpAndAmt),
|
|
RegExtend(Reg, ExtendOp),
|
|
Imm12(Imm12),
|
|
}
|
|
|
|
impl ResultRSEImm12 {
|
|
fn from_rse(rse: ResultRSE) -> ResultRSEImm12 {
|
|
match rse {
|
|
ResultRSE::Reg(r) => ResultRSEImm12::Reg(r),
|
|
ResultRSE::RegShift(r, s) => ResultRSEImm12::RegShift(r, s),
|
|
ResultRSE::RegExtend(r, e) => ResultRSEImm12::RegExtend(r, e),
|
|
}
|
|
}
|
|
}
|
|
|
|
//============================================================================
|
|
// Lowering: convert instruction inputs to forms that we can use.
|
|
|
|
/// Lower an instruction input to a 64-bit constant, if possible.
|
|
pub(crate) fn input_to_const(ctx: &mut Lower<Inst>, input: InsnInput) -> Option<u64> {
|
|
let input = ctx.get_input_as_source_or_const(input.insn, input.input);
|
|
input.constant
|
|
}
|
|
|
|
/// Lower an instruction input to a constant register-shift amount, if possible.
|
|
pub(crate) fn input_to_shiftimm(
|
|
ctx: &mut Lower<Inst>,
|
|
input: InsnInput,
|
|
) -> Option<ShiftOpShiftImm> {
|
|
input_to_const(ctx, input).and_then(ShiftOpShiftImm::maybe_from_shift)
|
|
}
|
|
|
|
/// How to handle narrow values loaded into registers; see note on `narrow_mode`
|
|
/// parameter to `put_input_in_*` below.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub(crate) enum NarrowValueMode {
|
|
None,
|
|
/// Zero-extend to 32 bits if original is < 32 bits.
|
|
ZeroExtend32,
|
|
/// Sign-extend to 32 bits if original is < 32 bits.
|
|
SignExtend32,
|
|
/// Zero-extend to 64 bits if original is < 64 bits.
|
|
ZeroExtend64,
|
|
/// Sign-extend to 64 bits if original is < 64 bits.
|
|
SignExtend64,
|
|
}
|
|
|
|
impl NarrowValueMode {
|
|
fn is_32bit(&self) -> bool {
|
|
match self {
|
|
NarrowValueMode::None => false,
|
|
NarrowValueMode::ZeroExtend32 | NarrowValueMode::SignExtend32 => true,
|
|
NarrowValueMode::ZeroExtend64 | NarrowValueMode::SignExtend64 => false,
|
|
}
|
|
}
|
|
|
|
fn is_signed(&self) -> bool {
|
|
match self {
|
|
NarrowValueMode::SignExtend32 | NarrowValueMode::SignExtend64 => true,
|
|
NarrowValueMode::ZeroExtend32 | NarrowValueMode::ZeroExtend64 => false,
|
|
NarrowValueMode::None => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emits instruction(s) to generate the given constant value into newly-allocated
|
|
/// temporary registers, returning these registers.
|
|
fn generate_constant(ctx: &mut Lower<Inst>, ty: Type, c: u128) -> ValueRegs<Reg> {
|
|
let from_bits = ty_bits(ty);
|
|
let masked = if from_bits < 128 {
|
|
c & ((1u128 << from_bits) - 1)
|
|
} else {
|
|
c
|
|
};
|
|
|
|
let cst_copy = ctx.alloc_tmp(ty);
|
|
for inst in Inst::gen_constant(cst_copy, masked, ty, |ty| {
|
|
ctx.alloc_tmp(ty).only_reg().unwrap()
|
|
})
|
|
.into_iter()
|
|
{
|
|
ctx.emit(inst);
|
|
}
|
|
non_writable_value_regs(cst_copy)
|
|
}
|
|
|
|
/// Extends a register according to `narrow_mode`.
|
|
/// If extended, the value is always extended to 64 bits, for simplicity.
|
|
fn extend_reg(
|
|
ctx: &mut Lower<Inst>,
|
|
ty: Type,
|
|
in_reg: Reg,
|
|
is_const: bool,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> Reg {
|
|
let from_bits = ty_bits(ty) as u8;
|
|
match (narrow_mode, from_bits) {
|
|
(NarrowValueMode::None, _) => in_reg,
|
|
(NarrowValueMode::ZeroExtend32, n) if n < 32 => {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: false,
|
|
from_bits,
|
|
to_bits: 32,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
(NarrowValueMode::SignExtend32, n) if n < 32 => {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: true,
|
|
from_bits,
|
|
to_bits: 32,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 32) | (NarrowValueMode::SignExtend32, 32) => in_reg,
|
|
|
|
(NarrowValueMode::ZeroExtend64, n) if n < 64 => {
|
|
if is_const {
|
|
// Constants are zero-extended to full 64-bit width on load already.
|
|
in_reg
|
|
} else {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: false,
|
|
from_bits,
|
|
to_bits: 64,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
}
|
|
(NarrowValueMode::SignExtend64, n) if n < 64 => {
|
|
let tmp = ctx.alloc_tmp(I32).only_reg().unwrap();
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: in_reg,
|
|
signed: true,
|
|
from_bits,
|
|
to_bits: 64,
|
|
});
|
|
tmp.to_reg()
|
|
}
|
|
(_, 64) => in_reg,
|
|
(_, 128) => in_reg,
|
|
|
|
_ => panic!(
|
|
"Unsupported input width: input ty {} bits {} mode {:?}",
|
|
ty, from_bits, narrow_mode
|
|
),
|
|
}
|
|
}
|
|
|
|
/// Lowers an instruction input to multiple regs
|
|
fn lower_value_to_regs(ctx: &mut Lower<Inst>, value: Value) -> (ValueRegs<Reg>, Type, bool) {
|
|
trace!("lower_value_to_regs: value {:?}", value);
|
|
let ty = ctx.value_ty(value);
|
|
let inputs = ctx.get_value_as_source_or_const(value);
|
|
let is_const = inputs.constant.is_some();
|
|
|
|
let in_regs = if let Some(c) = inputs.constant {
|
|
// Generate constants fresh at each use to minimize long-range register pressure.
|
|
generate_constant(ctx, ty, c as u128)
|
|
} else {
|
|
ctx.put_value_in_regs(value)
|
|
};
|
|
|
|
(in_regs, ty, is_const)
|
|
}
|
|
|
|
/// Lower an instruction input to a register
|
|
///
|
|
/// The given register will be extended appropriately, according to
|
|
/// `narrow_mode` and the input's type. If extended, the value is
|
|
/// always extended to 64 bits, for simplicity.
|
|
pub(crate) fn put_input_in_reg(
|
|
ctx: &mut Lower<Inst>,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> Reg {
|
|
let value = ctx.input_as_value(input.insn, input.input);
|
|
put_value_in_reg(ctx, value, narrow_mode)
|
|
}
|
|
|
|
/// Like above, only for values
|
|
fn put_value_in_reg(ctx: &mut Lower<Inst>, value: Value, narrow_mode: NarrowValueMode) -> Reg {
|
|
let (in_regs, ty, is_const) = lower_value_to_regs(ctx, value);
|
|
let reg = in_regs
|
|
.only_reg()
|
|
.expect("Multi-register value not expected");
|
|
|
|
extend_reg(ctx, ty, reg, is_const, narrow_mode)
|
|
}
|
|
|
|
/// Lower an instruction input to multiple regs
|
|
pub(crate) fn put_input_in_regs(ctx: &mut Lower<Inst>, input: InsnInput) -> ValueRegs<Reg> {
|
|
let value = ctx.input_as_value(input.insn, input.input);
|
|
let (in_regs, _, _) = lower_value_to_regs(ctx, value);
|
|
in_regs
|
|
}
|
|
|
|
/// Lower an instruction input to a reg or reg/shift, or reg/extend operand.
|
|
///
|
|
/// The `narrow_mode` flag indicates whether the consumer of this value needs
|
|
/// the high bits clear. For many operations, such as an add/sub/mul or any
|
|
/// bitwise logical operation, the low-bit results depend only on the low-bit
|
|
/// inputs, so e.g. we can do an 8 bit add on 32 bit registers where the 8-bit
|
|
/// value is stored in the low 8 bits of the register and the high 24 bits are
|
|
/// undefined. If the op truly needs the high N bits clear (such as for a
|
|
/// divide or a right-shift or a compare-to-zero), `narrow_mode` should be
|
|
/// set to `ZeroExtend` or `SignExtend` as appropriate, and the resulting
|
|
/// register will be provided the extended value.
|
|
fn put_input_in_rs(
|
|
ctx: &mut Lower<Inst>,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRS {
|
|
let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
|
|
// Unique or non-unique use is fine for merging here.
|
|
if let Some((insn, 0)) = inputs.inst.as_inst() {
|
|
let op = ctx.data(insn).opcode();
|
|
|
|
if op == Opcode::Ishl {
|
|
let shiftee = InsnInput { insn, input: 0 };
|
|
let shift_amt = InsnInput { insn, input: 1 };
|
|
|
|
// Can we get the shift amount as an immediate?
|
|
if let Some(shiftimm) = input_to_shiftimm(ctx, shift_amt) {
|
|
let shiftee_bits = ty_bits(ctx.input_ty(insn, 0));
|
|
if shiftee_bits <= std::u8::MAX as usize {
|
|
let shiftimm = shiftimm.mask(shiftee_bits as u8);
|
|
let reg = put_input_in_reg(ctx, shiftee, narrow_mode);
|
|
return ResultRS::RegShift(reg, ShiftOpAndAmt::new(ShiftOp::LSL, shiftimm));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ResultRS::Reg(put_input_in_reg(ctx, input, narrow_mode))
|
|
}
|
|
|
|
/// Lower an instruction input to a reg or reg/shift, or reg/extend operand.
|
|
/// This does not actually codegen the source instruction; it just uses the
|
|
/// vreg into which the source instruction will generate its value.
|
|
///
|
|
/// See note on `put_input_in_rs` for a description of `narrow_mode`.
|
|
fn put_input_in_rse(
|
|
ctx: &mut Lower<Inst>,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRSE {
|
|
let value = ctx.input_as_value(input.insn, input.input);
|
|
if let Some((val, extendop)) = get_as_extended_value(ctx, value, narrow_mode) {
|
|
let reg = put_value_in_reg(ctx, val, NarrowValueMode::None);
|
|
return ResultRSE::RegExtend(reg, extendop);
|
|
}
|
|
|
|
ResultRSE::from_rs(put_input_in_rs(ctx, input, narrow_mode))
|
|
}
|
|
|
|
fn get_as_extended_value(
|
|
ctx: &mut Lower<Inst>,
|
|
val: Value,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> Option<(Value, ExtendOp)> {
|
|
let inputs = ctx.get_value_as_source_or_const(val);
|
|
let (insn, n) = inputs.inst.as_inst()?;
|
|
if n != 0 {
|
|
return None;
|
|
}
|
|
let op = ctx.data(insn).opcode();
|
|
let out_ty = ctx.output_ty(insn, 0);
|
|
let out_bits = ty_bits(out_ty);
|
|
|
|
// Is this a zero-extend or sign-extend and can we handle that with a register-mode operator?
|
|
if op == Opcode::Uextend || op == Opcode::Sextend {
|
|
let sign_extend = op == Opcode::Sextend;
|
|
let inner_ty = ctx.input_ty(insn, 0);
|
|
let inner_bits = ty_bits(inner_ty);
|
|
assert!(inner_bits < out_bits);
|
|
if match (sign_extend, narrow_mode) {
|
|
// A single zero-extend or sign-extend is equal to itself.
|
|
(_, NarrowValueMode::None) => true,
|
|
// Two zero-extends or sign-extends in a row is equal to a single zero-extend or sign-extend.
|
|
(false, NarrowValueMode::ZeroExtend32) | (false, NarrowValueMode::ZeroExtend64) => true,
|
|
(true, NarrowValueMode::SignExtend32) | (true, NarrowValueMode::SignExtend64) => true,
|
|
// A zero-extend and a sign-extend in a row is not equal to a single zero-extend or sign-extend
|
|
(false, NarrowValueMode::SignExtend32) | (false, NarrowValueMode::SignExtend64) => {
|
|
false
|
|
}
|
|
(true, NarrowValueMode::ZeroExtend32) | (true, NarrowValueMode::ZeroExtend64) => false,
|
|
} {
|
|
let extendop = match (sign_extend, inner_bits) {
|
|
(true, 8) => ExtendOp::SXTB,
|
|
(false, 8) => ExtendOp::UXTB,
|
|
(true, 16) => ExtendOp::SXTH,
|
|
(false, 16) => ExtendOp::UXTH,
|
|
(true, 32) => ExtendOp::SXTW,
|
|
(false, 32) => ExtendOp::UXTW,
|
|
_ => unreachable!(),
|
|
};
|
|
return Some((ctx.input_as_value(insn, 0), extendop));
|
|
}
|
|
}
|
|
|
|
// If `out_ty` is smaller than 32 bits and we need to zero- or sign-extend,
|
|
// then get the result into a register and return an Extend-mode operand on
|
|
// that register.
|
|
if narrow_mode != NarrowValueMode::None
|
|
&& ((narrow_mode.is_32bit() && out_bits < 32) || (!narrow_mode.is_32bit() && out_bits < 64))
|
|
{
|
|
let extendop = match (narrow_mode, out_bits) {
|
|
(NarrowValueMode::SignExtend32, 1) | (NarrowValueMode::SignExtend64, 1) => {
|
|
ExtendOp::SXTB
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 1) | (NarrowValueMode::ZeroExtend64, 1) => {
|
|
ExtendOp::UXTB
|
|
}
|
|
(NarrowValueMode::SignExtend32, 8) | (NarrowValueMode::SignExtend64, 8) => {
|
|
ExtendOp::SXTB
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 8) | (NarrowValueMode::ZeroExtend64, 8) => {
|
|
ExtendOp::UXTB
|
|
}
|
|
(NarrowValueMode::SignExtend32, 16) | (NarrowValueMode::SignExtend64, 16) => {
|
|
ExtendOp::SXTH
|
|
}
|
|
(NarrowValueMode::ZeroExtend32, 16) | (NarrowValueMode::ZeroExtend64, 16) => {
|
|
ExtendOp::UXTH
|
|
}
|
|
(NarrowValueMode::SignExtend64, 32) => ExtendOp::SXTW,
|
|
(NarrowValueMode::ZeroExtend64, 32) => ExtendOp::UXTW,
|
|
_ => unreachable!(),
|
|
};
|
|
return Some((val, extendop));
|
|
}
|
|
None
|
|
}
|
|
|
|
pub(crate) fn put_input_in_rse_imm12(
|
|
ctx: &mut Lower<Inst>,
|
|
input: InsnInput,
|
|
narrow_mode: NarrowValueMode,
|
|
) -> ResultRSEImm12 {
|
|
if let Some(imm_value) = input_to_const(ctx, input) {
|
|
if let Some(i) = Imm12::maybe_from_u64(imm_value) {
|
|
let out_ty_bits = ty_bits(ctx.input_ty(input.insn, input.input));
|
|
let is_negative = (i.bits as u64) & (1 << (cmp::max(out_ty_bits, 1) - 1)) != 0;
|
|
|
|
// This condition can happen if we matched a value that overflows the output type of
|
|
// its `iconst` when viewed as a signed value (i.e. iconst.i8 200).
|
|
// When that happens we need to lower as a negative value, which we cannot do here.
|
|
if !(narrow_mode.is_signed() && is_negative) {
|
|
return ResultRSEImm12::Imm12(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
ResultRSEImm12::from_rse(put_input_in_rse(ctx, input, narrow_mode))
|
|
}
|
|
|
|
//============================================================================
|
|
// ALU instruction constructors.
|
|
|
|
pub(crate) fn alu_inst_imm12(
|
|
op: ALUOp,
|
|
ty: Type,
|
|
rd: Writable<Reg>,
|
|
rn: Reg,
|
|
rm: ResultRSEImm12,
|
|
) -> Inst {
|
|
let size = OperandSize::from_ty(ty);
|
|
match rm {
|
|
ResultRSEImm12::Imm12(imm12) => Inst::AluRRImm12 {
|
|
alu_op: op,
|
|
size,
|
|
rd,
|
|
rn,
|
|
imm12,
|
|
},
|
|
ResultRSEImm12::Reg(rm) => Inst::AluRRR {
|
|
alu_op: op,
|
|
size,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
},
|
|
ResultRSEImm12::RegShift(rm, shiftop) => Inst::AluRRRShift {
|
|
alu_op: op,
|
|
size,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
shiftop,
|
|
},
|
|
ResultRSEImm12::RegExtend(rm, extendop) => Inst::AluRRRExtend {
|
|
alu_op: op,
|
|
size,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
extendop,
|
|
},
|
|
}
|
|
}
|
|
|
|
//============================================================================
|
|
// Lowering: addressing mode support. Takes instruction directly, rather
|
|
// than an `InsnInput`, to do more introspection.
|
|
|
|
/// 32-bit addends that make up an address: an input, and an extension mode on that
|
|
/// input.
|
|
type AddressAddend32List = SmallVec<[(Reg, ExtendOp); 4]>;
|
|
/// 64-bit addends that make up an address: just an input.
|
|
type AddressAddend64List = SmallVec<[Reg; 4]>;
|
|
|
|
/// Collect all addends that feed into an address computation, with extend-modes
|
|
/// on each. Note that a load/store may have multiple address components (and
|
|
/// the CLIF semantics are that these components are added to form the final
|
|
/// address), but sometimes the CLIF that we receive still has arguments that
|
|
/// refer to `iadd` instructions. We also want to handle uextend/sextend below
|
|
/// the add(s).
|
|
///
|
|
/// We match any 64-bit add (and descend into its inputs), and we match any
|
|
/// 32-to-64-bit sign or zero extension. The returned addend-list will use
|
|
/// NarrowValueMode values to indicate how to extend each input:
|
|
///
|
|
/// - NarrowValueMode::None: the associated input is 64 bits wide; no extend.
|
|
/// - NarrowValueMode::SignExtend64: the associated input is 32 bits wide;
|
|
/// do a sign-extension.
|
|
/// - NarrowValueMode::ZeroExtend64: the associated input is 32 bits wide;
|
|
/// do a zero-extension.
|
|
///
|
|
/// We do not descend further into the inputs of extensions (unless it is a constant),
|
|
/// because supporting (e.g.) a 32-bit add that is later extended would require
|
|
/// additional masking of high-order bits, which is too complex. So, in essence, we
|
|
/// descend any number of adds from the roots, collecting all 64-bit address addends;
|
|
/// then possibly support extensions at these leaves.
|
|
fn collect_address_addends(
|
|
ctx: &mut Lower<Inst>,
|
|
root: Value,
|
|
) -> (AddressAddend64List, AddressAddend32List, i64) {
|
|
let mut result32: AddressAddend32List = SmallVec::new();
|
|
let mut result64: AddressAddend64List = SmallVec::new();
|
|
let mut offset: i64 = 0;
|
|
|
|
let mut workqueue: SmallVec<[Value; 4]> = smallvec![root];
|
|
|
|
while let Some(value) = workqueue.pop() {
|
|
debug_assert_eq!(ty_bits(ctx.value_ty(value)), 64);
|
|
if let Some((op, insn)) = maybe_value_multi(
|
|
ctx,
|
|
value,
|
|
&[
|
|
Opcode::Uextend,
|
|
Opcode::Sextend,
|
|
Opcode::Iadd,
|
|
Opcode::Iconst,
|
|
],
|
|
) {
|
|
match op {
|
|
Opcode::Uextend | Opcode::Sextend if ty_bits(ctx.input_ty(insn, 0)) == 32 => {
|
|
let extendop = if op == Opcode::Uextend {
|
|
ExtendOp::UXTW
|
|
} else {
|
|
ExtendOp::SXTW
|
|
};
|
|
let extendee_input = InsnInput { insn, input: 0 };
|
|
// If the input is a zero-extension of a constant, add the value to the known
|
|
// offset.
|
|
// Only do this for zero-extension, as generating a sign-extended
|
|
// constant may be more instructions than using the 'SXTW' addressing mode.
|
|
if let (Some(insn), ExtendOp::UXTW) = (
|
|
maybe_input_insn(ctx, extendee_input, Opcode::Iconst),
|
|
extendop,
|
|
) {
|
|
let value = (ctx.get_constant(insn).unwrap() & 0xFFFF_FFFF_u64) as i64;
|
|
offset += value;
|
|
} else {
|
|
let reg = put_input_in_reg(ctx, extendee_input, NarrowValueMode::None);
|
|
result32.push((reg, extendop));
|
|
}
|
|
}
|
|
Opcode::Uextend | Opcode::Sextend => {
|
|
let reg = put_value_in_reg(ctx, value, NarrowValueMode::None);
|
|
result64.push(reg);
|
|
}
|
|
Opcode::Iadd => {
|
|
for input in 0..ctx.num_inputs(insn) {
|
|
let addend = ctx.input_as_value(insn, input);
|
|
workqueue.push(addend);
|
|
}
|
|
}
|
|
Opcode::Iconst => {
|
|
let value: i64 = ctx.get_constant(insn).unwrap() as i64;
|
|
offset += value;
|
|
}
|
|
_ => panic!("Unexpected opcode from maybe_input_insn_multi"),
|
|
}
|
|
} else {
|
|
let reg = put_value_in_reg(ctx, value, NarrowValueMode::ZeroExtend64);
|
|
result64.push(reg);
|
|
}
|
|
}
|
|
|
|
(result64, result32, offset)
|
|
}
|
|
|
|
/// Lower the address of a pair load or store.
|
|
pub(crate) fn lower_pair_address(ctx: &mut Lower<Inst>, addr: Value, offset: i32) -> PairAMode {
|
|
// Collect addends through an arbitrary tree of 32-to-64-bit sign/zero
|
|
// extends and addition ops. We update these as we consume address
|
|
// components, so they represent the remaining addends not yet handled.
|
|
let (mut addends64, mut addends32, args_offset) = collect_address_addends(ctx, addr);
|
|
let offset = args_offset + (offset as i64);
|
|
|
|
trace!(
|
|
"lower_pair_address: addends64 {:?}, addends32 {:?}, offset {}",
|
|
addends64,
|
|
addends32,
|
|
offset
|
|
);
|
|
|
|
// Pairs basically only have reg + imm formats so we only have to worry about those
|
|
|
|
let base_reg = if let Some(reg64) = addends64.pop() {
|
|
reg64
|
|
} else if let Some((reg32, extendop)) = addends32.pop() {
|
|
let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let signed = match extendop {
|
|
ExtendOp::SXTW => true,
|
|
ExtendOp::UXTW => false,
|
|
_ => unreachable!(),
|
|
};
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: reg32,
|
|
signed,
|
|
from_bits: 32,
|
|
to_bits: 64,
|
|
});
|
|
tmp.to_reg()
|
|
} else {
|
|
zero_reg()
|
|
};
|
|
|
|
let addr = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
ctx.emit(Inst::gen_move(addr, base_reg, I64));
|
|
|
|
// We have the base register, if we have any others, we need to add them
|
|
lower_add_addends(ctx, addr, addends64, addends32);
|
|
|
|
// Figure out what offset we should emit
|
|
let imm7 = SImm7Scaled::maybe_from_i64(offset, I64).unwrap_or_else(|| {
|
|
lower_add_immediate(ctx, addr, addr.to_reg(), offset);
|
|
SImm7Scaled::maybe_from_i64(0, I64).unwrap()
|
|
});
|
|
|
|
PairAMode::SignedOffset(addr.to_reg(), imm7)
|
|
}
|
|
|
|
/// Lower the address of a load or store.
|
|
pub(crate) fn lower_address(
|
|
ctx: &mut Lower<Inst>,
|
|
elem_ty: Type,
|
|
addr: Value,
|
|
offset: i32,
|
|
) -> AMode {
|
|
// TODO: support base_reg + scale * index_reg. For this, we would need to
|
|
// pattern-match shl or mul instructions.
|
|
|
|
// Collect addends through an arbitrary tree of 32-to-64-bit sign/zero
|
|
// extends and addition ops. We update these as we consume address
|
|
// components, so they represent the remaining addends not yet handled.
|
|
let (mut addends64, mut addends32, args_offset) = collect_address_addends(ctx, addr);
|
|
let mut offset = args_offset + (offset as i64);
|
|
|
|
trace!(
|
|
"lower_address: addends64 {:?}, addends32 {:?}, offset {}",
|
|
addends64,
|
|
addends32,
|
|
offset
|
|
);
|
|
|
|
// First, decide what the `AMode` will be. Take one extendee and one 64-bit
|
|
// reg, or two 64-bit regs, or a 64-bit reg and a 32-bit reg with extension,
|
|
// or some other combination as appropriate.
|
|
let memarg = if addends64.len() > 0 {
|
|
if addends32.len() > 0 {
|
|
let (reg32, extendop) = addends32.pop().unwrap();
|
|
let reg64 = addends64.pop().unwrap();
|
|
AMode::RegExtended {
|
|
rn: reg64,
|
|
rm: reg32,
|
|
extendop,
|
|
}
|
|
} else if offset > 0 && offset < 0x1000 {
|
|
let reg64 = addends64.pop().unwrap();
|
|
let off = offset;
|
|
offset = 0;
|
|
AMode::RegOffset {
|
|
rn: reg64,
|
|
off,
|
|
ty: elem_ty,
|
|
}
|
|
} else if addends64.len() >= 2 {
|
|
let reg1 = addends64.pop().unwrap();
|
|
let reg2 = addends64.pop().unwrap();
|
|
AMode::RegReg { rn: reg1, rm: reg2 }
|
|
} else {
|
|
let reg1 = addends64.pop().unwrap();
|
|
AMode::reg(reg1)
|
|
}
|
|
} else
|
|
/* addends64.len() == 0 */
|
|
{
|
|
if addends32.len() > 0 {
|
|
let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let (reg1, extendop) = addends32.pop().unwrap();
|
|
let signed = match extendop {
|
|
ExtendOp::SXTW => true,
|
|
ExtendOp::UXTW => false,
|
|
_ => unreachable!(),
|
|
};
|
|
ctx.emit(Inst::Extend {
|
|
rd: tmp,
|
|
rn: reg1,
|
|
signed,
|
|
from_bits: 32,
|
|
to_bits: 64,
|
|
});
|
|
if let Some((reg2, extendop)) = addends32.pop() {
|
|
AMode::RegExtended {
|
|
rn: tmp.to_reg(),
|
|
rm: reg2,
|
|
extendop,
|
|
}
|
|
} else {
|
|
AMode::reg(tmp.to_reg())
|
|
}
|
|
} else
|
|
/* addends32.len() == 0 */
|
|
{
|
|
let off_reg = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
lower_constant_u64(ctx, off_reg, offset as u64);
|
|
offset = 0;
|
|
AMode::reg(off_reg.to_reg())
|
|
}
|
|
};
|
|
|
|
// At this point, if we have any remaining components, we need to allocate a
|
|
// temp, replace one of the registers in the AMode with the temp, and emit
|
|
// instructions to add together the remaining components. Return immediately
|
|
// if this is *not* the case.
|
|
if offset == 0 && addends32.len() == 0 && addends64.len() == 0 {
|
|
return memarg;
|
|
}
|
|
|
|
// Allocate the temp and shoehorn it into the AMode.
|
|
let addr = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let (reg, memarg) = match memarg {
|
|
AMode::RegExtended { rn, rm, extendop } => (
|
|
rn,
|
|
AMode::RegExtended {
|
|
rn: addr.to_reg(),
|
|
rm,
|
|
extendop,
|
|
},
|
|
),
|
|
AMode::RegOffset { rn, off, ty } => (
|
|
rn,
|
|
AMode::RegOffset {
|
|
rn: addr.to_reg(),
|
|
off,
|
|
ty,
|
|
},
|
|
),
|
|
AMode::RegReg { rn, rm } => (
|
|
rm,
|
|
AMode::RegReg {
|
|
rn: addr.to_reg(),
|
|
rm: rn,
|
|
},
|
|
),
|
|
AMode::UnsignedOffset { rn, uimm12 } => (
|
|
rn,
|
|
AMode::UnsignedOffset {
|
|
rn: addr.to_reg(),
|
|
uimm12,
|
|
},
|
|
),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
// If there is any offset, load that first into `addr`, and add the `reg`
|
|
// that we kicked out of the `AMode`; otherwise, start with that reg.
|
|
if offset != 0 {
|
|
lower_add_immediate(ctx, addr, reg, offset)
|
|
} else {
|
|
ctx.emit(Inst::gen_move(addr, reg, I64));
|
|
}
|
|
|
|
// Now handle reg64 and reg32-extended components.
|
|
lower_add_addends(ctx, addr, addends64, addends32);
|
|
|
|
memarg
|
|
}
|
|
|
|
fn lower_add_addends(
|
|
ctx: &mut Lower<Inst>,
|
|
rd: Writable<Reg>,
|
|
addends64: AddressAddend64List,
|
|
addends32: AddressAddend32List,
|
|
) {
|
|
for reg in addends64 {
|
|
// If the register is the stack reg, we must move it to another reg
|
|
// before adding it.
|
|
let reg = if reg == stack_reg() {
|
|
let tmp = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
ctx.emit(Inst::gen_move(tmp, stack_reg(), I64));
|
|
tmp.to_reg()
|
|
} else {
|
|
reg
|
|
};
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Add,
|
|
size: OperandSize::Size64,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
rm: reg,
|
|
});
|
|
}
|
|
for (reg, extendop) in addends32 {
|
|
assert!(reg != stack_reg());
|
|
ctx.emit(Inst::AluRRRExtend {
|
|
alu_op: ALUOp::Add,
|
|
size: OperandSize::Size64,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
rm: reg,
|
|
extendop,
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Adds into `rd` a signed imm pattern matching the best instruction for it.
|
|
// TODO: This function is duplicated in ctx.gen_add_imm
|
|
fn lower_add_immediate(ctx: &mut Lower<Inst>, dst: Writable<Reg>, src: Reg, imm: i64) {
|
|
// If we can fit offset or -offset in an imm12, use an add-imm
|
|
// Otherwise, lower the constant first then add.
|
|
if let Some(imm12) = Imm12::maybe_from_u64(imm as u64) {
|
|
ctx.emit(Inst::AluRRImm12 {
|
|
alu_op: ALUOp::Add,
|
|
size: OperandSize::Size64,
|
|
rd: dst,
|
|
rn: src,
|
|
imm12,
|
|
});
|
|
} else if let Some(imm12) = Imm12::maybe_from_u64(imm.wrapping_neg() as u64) {
|
|
ctx.emit(Inst::AluRRImm12 {
|
|
alu_op: ALUOp::Sub,
|
|
size: OperandSize::Size64,
|
|
rd: dst,
|
|
rn: src,
|
|
imm12,
|
|
});
|
|
} else {
|
|
lower_constant_u64(ctx, dst, imm as u64);
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::Add,
|
|
size: OperandSize::Size64,
|
|
rd: dst,
|
|
rn: dst.to_reg(),
|
|
rm: src,
|
|
});
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_u64(ctx: &mut Lower<Inst>, rd: Writable<Reg>, value: u64) {
|
|
for inst in Inst::load_constant(rd, value) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_f32(ctx: &mut Lower<Inst>, rd: Writable<Reg>, value: f32) {
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
for inst in Inst::load_fp_constant32(rd, value.to_bits(), alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_f64(ctx: &mut Lower<Inst>, rd: Writable<Reg>, value: f64) {
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
for inst in Inst::load_fp_constant64(rd, value.to_bits(), alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_constant_f128(ctx: &mut Lower<Inst>, rd: Writable<Reg>, value: u128) {
|
|
if value == 0 {
|
|
// Fast-track a common case. The general case, viz, calling `Inst::load_fp_constant128`,
|
|
// is potentially expensive.
|
|
ctx.emit(Inst::VecDupImm {
|
|
rd,
|
|
imm: ASIMDMovModImm::zero(ScalarSize::Size8),
|
|
invert: false,
|
|
size: VectorSize::Size8x16,
|
|
});
|
|
} else {
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
for inst in Inst::load_fp_constant128(rd, value, alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_splat_const(
|
|
ctx: &mut Lower<Inst>,
|
|
rd: Writable<Reg>,
|
|
value: u64,
|
|
size: VectorSize,
|
|
) {
|
|
let (value, narrow_size) = match size.lane_size() {
|
|
ScalarSize::Size8 => (value as u8 as u64, ScalarSize::Size128),
|
|
ScalarSize::Size16 => (value as u16 as u64, ScalarSize::Size8),
|
|
ScalarSize::Size32 => (value as u32 as u64, ScalarSize::Size16),
|
|
ScalarSize::Size64 => (value, ScalarSize::Size32),
|
|
_ => unreachable!(),
|
|
};
|
|
let (value, size) = match Inst::get_replicated_vector_pattern(value as u128, narrow_size) {
|
|
Some((value, lane_size)) => (
|
|
value,
|
|
VectorSize::from_lane_size(lane_size, size.is_128bits()),
|
|
),
|
|
None => (value, size),
|
|
};
|
|
let alloc_tmp = |ty| ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
for inst in Inst::load_replicated_vector_pattern(rd, value, size, alloc_tmp) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_condcode(cc: IntCC) -> Cond {
|
|
match cc {
|
|
IntCC::Equal => Cond::Eq,
|
|
IntCC::NotEqual => Cond::Ne,
|
|
IntCC::SignedGreaterThanOrEqual => Cond::Ge,
|
|
IntCC::SignedGreaterThan => Cond::Gt,
|
|
IntCC::SignedLessThanOrEqual => Cond::Le,
|
|
IntCC::SignedLessThan => Cond::Lt,
|
|
IntCC::UnsignedGreaterThanOrEqual => Cond::Hs,
|
|
IntCC::UnsignedGreaterThan => Cond::Hi,
|
|
IntCC::UnsignedLessThanOrEqual => Cond::Ls,
|
|
IntCC::UnsignedLessThan => Cond::Lo,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_fp_condcode(cc: FloatCC) -> Cond {
|
|
// Refer to `codegen/shared/src/condcodes.rs` and to the `FCMP` AArch64 docs.
|
|
// The FCMP instruction sets:
|
|
// NZCV
|
|
// - PCSR.NZCV = 0011 on UN (unordered),
|
|
// 0110 on EQ,
|
|
// 1000 on LT,
|
|
// 0010 on GT.
|
|
match cc {
|
|
// EQ | LT | GT. Vc => V clear.
|
|
FloatCC::Ordered => Cond::Vc,
|
|
// UN. Vs => V set.
|
|
FloatCC::Unordered => Cond::Vs,
|
|
// EQ. Eq => Z set.
|
|
FloatCC::Equal => Cond::Eq,
|
|
// UN | LT | GT. Ne => Z clear.
|
|
FloatCC::NotEqual => Cond::Ne,
|
|
// LT | GT.
|
|
FloatCC::OrderedNotEqual => unimplemented!(),
|
|
// UN | EQ
|
|
FloatCC::UnorderedOrEqual => unimplemented!(),
|
|
// LT. Mi => N set.
|
|
FloatCC::LessThan => Cond::Mi,
|
|
// LT | EQ. Ls => C clear or Z set.
|
|
FloatCC::LessThanOrEqual => Cond::Ls,
|
|
// GT. Gt => Z clear, N = V.
|
|
FloatCC::GreaterThan => Cond::Gt,
|
|
// GT | EQ. Ge => N = V.
|
|
FloatCC::GreaterThanOrEqual => Cond::Ge,
|
|
// UN | LT
|
|
FloatCC::UnorderedOrLessThan => unimplemented!(),
|
|
// UN | LT | EQ
|
|
FloatCC::UnorderedOrLessThanOrEqual => unimplemented!(),
|
|
// UN | GT
|
|
FloatCC::UnorderedOrGreaterThan => unimplemented!(),
|
|
// UN | GT | EQ
|
|
FloatCC::UnorderedOrGreaterThanOrEqual => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lower_vector_compare(
|
|
ctx: &mut Lower<Inst>,
|
|
rd: Writable<Reg>,
|
|
mut rn: Reg,
|
|
mut rm: Reg,
|
|
ty: Type,
|
|
cond: Cond,
|
|
) -> CodegenResult<()> {
|
|
let is_float = ty.lane_type().is_float();
|
|
let size = VectorSize::from_ty(ty);
|
|
|
|
if is_float && (cond == Cond::Vc || cond == Cond::Vs) {
|
|
let tmp = ctx.alloc_tmp(ty).only_reg().unwrap();
|
|
|
|
ctx.emit(Inst::VecRRR {
|
|
alu_op: VecALUOp::Fcmeq,
|
|
rd,
|
|
rn,
|
|
rm: rn,
|
|
size,
|
|
});
|
|
ctx.emit(Inst::VecRRR {
|
|
alu_op: VecALUOp::Fcmeq,
|
|
rd: tmp,
|
|
rn: rm,
|
|
rm,
|
|
size,
|
|
});
|
|
ctx.emit(Inst::VecRRR {
|
|
alu_op: VecALUOp::And,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
rm: tmp.to_reg(),
|
|
size,
|
|
});
|
|
|
|
if cond == Cond::Vs {
|
|
ctx.emit(Inst::VecMisc {
|
|
op: VecMisc2::Not,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
size,
|
|
});
|
|
}
|
|
} else {
|
|
// 'Less than' operations are implemented by swapping
|
|
// the order of operands and using the 'greater than'
|
|
// instructions.
|
|
// 'Not equal' is implemented with 'equal' and inverting
|
|
// the result.
|
|
let (alu_op, swap) = match (is_float, cond) {
|
|
(false, Cond::Eq) => (VecALUOp::Cmeq, false),
|
|
(false, Cond::Ne) => (VecALUOp::Cmeq, false),
|
|
(false, Cond::Ge) => (VecALUOp::Cmge, false),
|
|
(false, Cond::Gt) => (VecALUOp::Cmgt, false),
|
|
(false, Cond::Le) => (VecALUOp::Cmge, true),
|
|
(false, Cond::Lt) => (VecALUOp::Cmgt, true),
|
|
(false, Cond::Hs) => (VecALUOp::Cmhs, false),
|
|
(false, Cond::Hi) => (VecALUOp::Cmhi, false),
|
|
(false, Cond::Ls) => (VecALUOp::Cmhs, true),
|
|
(false, Cond::Lo) => (VecALUOp::Cmhi, true),
|
|
(true, Cond::Eq) => (VecALUOp::Fcmeq, false),
|
|
(true, Cond::Ne) => (VecALUOp::Fcmeq, false),
|
|
(true, Cond::Mi) => (VecALUOp::Fcmgt, true),
|
|
(true, Cond::Ls) => (VecALUOp::Fcmge, true),
|
|
(true, Cond::Ge) => (VecALUOp::Fcmge, false),
|
|
(true, Cond::Gt) => (VecALUOp::Fcmgt, false),
|
|
_ => {
|
|
return Err(CodegenError::Unsupported(format!(
|
|
"Unsupported {} SIMD vector comparison: {:?}",
|
|
if is_float {
|
|
"floating-point"
|
|
} else {
|
|
"integer"
|
|
},
|
|
cond
|
|
)))
|
|
}
|
|
};
|
|
|
|
if swap {
|
|
std::mem::swap(&mut rn, &mut rm);
|
|
}
|
|
|
|
ctx.emit(Inst::VecRRR {
|
|
alu_op,
|
|
rd,
|
|
rn,
|
|
rm,
|
|
size,
|
|
});
|
|
|
|
if cond == Cond::Ne {
|
|
ctx.emit(Inst::VecMisc {
|
|
op: VecMisc2::Not,
|
|
rd,
|
|
rn: rd.to_reg(),
|
|
size,
|
|
});
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Determines whether this condcode interprets inputs as signed or unsigned. See the
|
|
/// documentation for the `icmp` instruction in cranelift-codegen/meta/src/shared/instructions.rs
|
|
/// for further insights into this.
|
|
pub(crate) fn condcode_is_signed(cc: IntCC) -> bool {
|
|
match cc {
|
|
IntCC::Equal
|
|
| IntCC::UnsignedGreaterThanOrEqual
|
|
| IntCC::UnsignedGreaterThan
|
|
| IntCC::UnsignedLessThanOrEqual
|
|
| IntCC::UnsignedLessThan
|
|
| IntCC::NotEqual => false,
|
|
IntCC::SignedGreaterThanOrEqual
|
|
| IntCC::SignedGreaterThan
|
|
| IntCC::SignedLessThanOrEqual
|
|
| IntCC::SignedLessThan => true,
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
// Helpers for instruction lowering.
|
|
|
|
/// Checks for an instance of `op` feeding the given input.
|
|
pub(crate) fn maybe_input_insn(
|
|
c: &mut Lower<Inst>,
|
|
input: InsnInput,
|
|
op: Opcode,
|
|
) -> Option<IRInst> {
|
|
let inputs = c.get_input_as_source_or_const(input.insn, input.input);
|
|
trace!(
|
|
"maybe_input_insn: input {:?} has options {:?}; looking for op {:?}",
|
|
input,
|
|
inputs,
|
|
op
|
|
);
|
|
if let Some((src_inst, _)) = inputs.inst.as_inst() {
|
|
let data = c.data(src_inst);
|
|
trace!(" -> input inst {:?}", data);
|
|
if data.opcode() == op {
|
|
return Some(src_inst);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Checks for an instance of `op` defining the given value.
|
|
pub(crate) fn maybe_value(c: &mut Lower<Inst>, value: Value, op: Opcode) -> Option<IRInst> {
|
|
let inputs = c.get_value_as_source_or_const(value);
|
|
if let Some((src_inst, _)) = inputs.inst.as_inst() {
|
|
let data = c.data(src_inst);
|
|
if data.opcode() == op {
|
|
return Some(src_inst);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Checks for an instance of any one of `ops` defining the given value.
|
|
pub(crate) fn maybe_value_multi(
|
|
c: &mut Lower<Inst>,
|
|
value: Value,
|
|
ops: &[Opcode],
|
|
) -> Option<(Opcode, IRInst)> {
|
|
for &op in ops {
|
|
if let Some(inst) = maybe_value(c, value, op) {
|
|
return Some((op, inst));
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Checks for an instance of `op` feeding the given input, possibly via a conversion `conv` (e.g.,
|
|
/// Bint or a bitcast).
|
|
///
|
|
/// FIXME cfallin 2020-03-30: this is really ugly. Factor out tree-matching stuff and make it
|
|
/// a bit more generic.
|
|
pub(crate) fn maybe_input_insn_via_conv(
|
|
c: &mut Lower<Inst>,
|
|
input: InsnInput,
|
|
op: Opcode,
|
|
conv: Opcode,
|
|
) -> Option<IRInst> {
|
|
let inputs = c.get_input_as_source_or_const(input.insn, input.input);
|
|
if let Some((src_inst, _)) = inputs.inst.as_inst() {
|
|
let data = c.data(src_inst);
|
|
if data.opcode() == op {
|
|
return Some(src_inst);
|
|
}
|
|
if data.opcode() == conv {
|
|
let inputs = c.get_input_as_source_or_const(src_inst, 0);
|
|
if let Some((src_inst, _)) = inputs.inst.as_inst() {
|
|
let data = c.data(src_inst);
|
|
if data.opcode() == op {
|
|
return Some(src_inst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Specifies what [lower_icmp] should do when lowering
|
|
#[derive(Debug, Clone, PartialEq)]
|
|
pub(crate) enum IcmpOutput {
|
|
/// Lowers the comparison into a cond code, discarding the results. The cond code emitted can
|
|
/// be checked in the resulting [IcmpResult].
|
|
CondCode,
|
|
/// Materializes the results into a register. This may overwrite any flags previously set.
|
|
Register(Writable<Reg>),
|
|
}
|
|
|
|
impl IcmpOutput {
|
|
pub fn reg(&self) -> Option<Writable<Reg>> {
|
|
match self {
|
|
IcmpOutput::CondCode => None,
|
|
IcmpOutput::Register(reg) => Some(*reg),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The output of an Icmp lowering.
|
|
#[derive(Debug, Clone, PartialEq)]
|
|
pub(crate) enum IcmpResult {
|
|
/// The result was output into the given [Cond]. Callers may perform operations using this [Cond]
|
|
/// and its inverse, other [Cond]'s are not guaranteed to be correct.
|
|
CondCode(Cond),
|
|
/// The result was materialized into the output register.
|
|
Register,
|
|
}
|
|
|
|
impl IcmpResult {
|
|
pub fn unwrap_cond(&self) -> Cond {
|
|
match self {
|
|
IcmpResult::CondCode(c) => *c,
|
|
_ => panic!("Unwrapped cond, but IcmpResult was {:?}", self),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Lower an icmp comparision
|
|
///
|
|
/// We can lower into the status flags, or materialize the result into a register
|
|
/// This is controlled by the `output` parameter.
|
|
pub(crate) fn lower_icmp(
|
|
ctx: &mut Lower<Inst>,
|
|
insn: IRInst,
|
|
condcode: IntCC,
|
|
output: IcmpOutput,
|
|
) -> CodegenResult<IcmpResult> {
|
|
trace!(
|
|
"lower_icmp: insn {}, condcode: {}, output: {:?}",
|
|
insn,
|
|
condcode,
|
|
output
|
|
);
|
|
|
|
let rd = output.reg().unwrap_or(writable_zero_reg());
|
|
let inputs = insn_inputs(ctx, insn);
|
|
let cond = lower_condcode(condcode);
|
|
let is_signed = condcode_is_signed(condcode);
|
|
let ty = ctx.input_ty(insn, 0);
|
|
let bits = ty_bits(ty);
|
|
let narrow_mode = match (bits <= 32, is_signed) {
|
|
(true, true) => NarrowValueMode::SignExtend32,
|
|
(true, false) => NarrowValueMode::ZeroExtend32,
|
|
(false, true) => NarrowValueMode::SignExtend64,
|
|
(false, false) => NarrowValueMode::ZeroExtend64,
|
|
};
|
|
let mut should_materialize = output.reg().is_some();
|
|
|
|
let out_condcode = if ty == I128 {
|
|
let lhs = put_input_in_regs(ctx, inputs[0]);
|
|
let rhs = put_input_in_regs(ctx, inputs[1]);
|
|
|
|
let tmp1 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
let tmp2 = ctx.alloc_tmp(I64).only_reg().unwrap();
|
|
|
|
match condcode {
|
|
IntCC::Equal | IntCC::NotEqual => {
|
|
// cmp lhs_lo, rhs_lo
|
|
// ccmp lhs_hi, rhs_hi, #0, eq
|
|
// cset dst, {eq, ne}
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::SubS,
|
|
size: OperandSize::Size64,
|
|
rd: writable_zero_reg(),
|
|
rn: lhs.regs()[0],
|
|
rm: rhs.regs()[0],
|
|
});
|
|
ctx.emit(Inst::CCmp {
|
|
size: OperandSize::Size64,
|
|
rn: lhs.regs()[1],
|
|
rm: rhs.regs()[1],
|
|
nzcv: NZCV::new(false, false, false, false),
|
|
cond: Cond::Eq,
|
|
});
|
|
cond
|
|
}
|
|
_ => {
|
|
// cmp lhs_lo, rhs_lo
|
|
// cset tmp1, unsigned_cond
|
|
// cmp lhs_hi, rhs_hi
|
|
// cset tmp2, cond
|
|
// csel dst, tmp1, tmp2, eq
|
|
|
|
let rd = output.reg().unwrap_or(tmp1);
|
|
let unsigned_cond = lower_condcode(condcode.unsigned());
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::SubS,
|
|
size: OperandSize::Size64,
|
|
rd: writable_zero_reg(),
|
|
rn: lhs.regs()[0],
|
|
rm: rhs.regs()[0],
|
|
});
|
|
materialize_bool_result(ctx, insn, tmp1, unsigned_cond);
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::SubS,
|
|
size: OperandSize::Size64,
|
|
rd: writable_zero_reg(),
|
|
rn: lhs.regs()[1],
|
|
rm: rhs.regs()[1],
|
|
});
|
|
materialize_bool_result(ctx, insn, tmp2, cond);
|
|
ctx.emit(Inst::CSel {
|
|
cond: Cond::Eq,
|
|
rd,
|
|
rn: tmp1.to_reg(),
|
|
rm: tmp2.to_reg(),
|
|
});
|
|
|
|
if output == IcmpOutput::CondCode {
|
|
// We only need to guarantee that the flags for `cond` are correct, so we can
|
|
// compare rd with 0 or 1
|
|
|
|
// If we are doing compare or equal, we want to compare with 1 instead of zero
|
|
if condcode.without_equal() != condcode {
|
|
lower_constant_u64(ctx, tmp2, 1);
|
|
}
|
|
|
|
let xzr = zero_reg();
|
|
let rd = rd.to_reg();
|
|
let tmp2 = tmp2.to_reg();
|
|
let (rn, rm) = match condcode {
|
|
IntCC::SignedGreaterThanOrEqual => (rd, tmp2),
|
|
IntCC::UnsignedGreaterThanOrEqual => (rd, tmp2),
|
|
IntCC::SignedLessThanOrEqual => (tmp2, rd),
|
|
IntCC::UnsignedLessThanOrEqual => (tmp2, rd),
|
|
IntCC::SignedGreaterThan => (rd, xzr),
|
|
IntCC::UnsignedGreaterThan => (rd, xzr),
|
|
IntCC::SignedLessThan => (xzr, rd),
|
|
IntCC::UnsignedLessThan => (xzr, rd),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
ctx.emit(Inst::AluRRR {
|
|
alu_op: ALUOp::SubS,
|
|
size: OperandSize::Size64,
|
|
rd: writable_zero_reg(),
|
|
rn,
|
|
rm,
|
|
});
|
|
}
|
|
|
|
// Prevent a second materialize_bool_result to be emitted at the end of the function
|
|
should_materialize = false;
|
|
cond
|
|
}
|
|
}
|
|
} else if ty.is_vector() {
|
|
assert_ne!(output, IcmpOutput::CondCode);
|
|
should_materialize = false;
|
|
|
|
let rn = put_input_in_reg(ctx, inputs[0], narrow_mode);
|
|
let rm = put_input_in_reg(ctx, inputs[1], narrow_mode);
|
|
lower_vector_compare(ctx, rd, rn, rm, ty, cond)?;
|
|
cond
|
|
} else {
|
|
let rn = put_input_in_reg(ctx, inputs[0], narrow_mode);
|
|
let rm = put_input_in_rse_imm12(ctx, inputs[1], narrow_mode);
|
|
ctx.emit(alu_inst_imm12(ALUOp::SubS, ty, writable_zero_reg(), rn, rm));
|
|
cond
|
|
};
|
|
|
|
// Most of the comparisons above produce flags by default, if the caller requested the result
|
|
// in a register we materialize those flags into a register. Some branches do end up producing
|
|
// the result as a register by default, so we ignore those.
|
|
if should_materialize {
|
|
materialize_bool_result(ctx, insn, rd, out_condcode);
|
|
}
|
|
|
|
Ok(match output {
|
|
// We currently never emit a different register than what was asked for
|
|
IcmpOutput::Register(_) => IcmpResult::Register,
|
|
IcmpOutput::CondCode => IcmpResult::CondCode(out_condcode),
|
|
})
|
|
}
|
|
|
|
pub(crate) fn lower_fcmp_or_ffcmp_to_flags(ctx: &mut Lower<Inst>, insn: IRInst) {
|
|
let ty = ctx.input_ty(insn, 0);
|
|
let inputs = [InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }];
|
|
let rn = put_input_in_reg(ctx, inputs[0], NarrowValueMode::None);
|
|
let rm = put_input_in_reg(ctx, inputs[1], NarrowValueMode::None);
|
|
ctx.emit(Inst::FpuCmp {
|
|
size: ScalarSize::from_ty(ty),
|
|
rn,
|
|
rm,
|
|
});
|
|
}
|
|
|
|
/// Materialize a boolean value into a register from the flags
|
|
/// (e.g set by a comparison).
|
|
/// A 0 / -1 (all-ones) result as expected for bool operations.
|
|
pub(crate) fn materialize_bool_result(
|
|
ctx: &mut Lower<Inst>,
|
|
insn: IRInst,
|
|
rd: Writable<Reg>,
|
|
cond: Cond,
|
|
) {
|
|
// A boolean is 0 / -1; if output width is > 1 use `csetm`,
|
|
// otherwise use `cset`.
|
|
if ty_bits(ctx.output_ty(insn, 0)) > 1 {
|
|
ctx.emit(Inst::CSetm { rd, cond });
|
|
} else {
|
|
ctx.emit(Inst::CSet { rd, cond });
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
// Lowering-backend trait implementation.
|
|
|
|
impl LowerBackend for AArch64Backend {
|
|
type MInst = Inst;
|
|
|
|
fn lower(&self, ctx: &mut Lower<Inst>, ir_inst: IRInst) -> CodegenResult<()> {
|
|
lower_inst::lower_insn_to_regs(ctx, ir_inst, &self.triple, &self.flags, &self.isa_flags)
|
|
}
|
|
|
|
fn lower_branch_group(
|
|
&self,
|
|
ctx: &mut Lower<Inst>,
|
|
branches: &[IRInst],
|
|
targets: &[MachLabel],
|
|
) -> CodegenResult<()> {
|
|
lower_inst::lower_branch(ctx, branches, targets)
|
|
}
|
|
|
|
fn maybe_pinned_reg(&self) -> Option<Reg> {
|
|
Some(xreg(PINNED_REG))
|
|
}
|
|
}
|