Alex Crichton bd3dcd313d x64: Add more fma instruction lowerings (#5846)
The relaxed-simd proposal for WebAssembly adds a fused-multiply-add
operation for `v128` types so I was poking around at Cranelift's
existing support for its `fma` instruction. I was also poking around at
the x86_64 ISA's offerings for the FMA operation and ended up with this
PR that improves the lowering of the `fma` instruction on the x64
backend in a number of ways:

* A libcall-based fallback is now provided for `f32x4` and `f64x2` types
  in preparation for eventual support of the relaxed-simd proposal.
  These encodings are horribly slow, but it's expected that if FMA
  semantics must be guaranteed then it's the best that can be done
  without the `fma` feature. Otherwise it'll be up to producers (e.g.
  Wasmtime embedders) whether wasm-level FMA operations should be FMA or
  multiply-then-add.

* In addition to the existing `vfmadd213*` instructions opcodes were
  added for `vfmadd132*`. The `132` variant is selected based on which
  argument can have a sinkable load.

* Any argument in the `fma` CLIF instruction can now have a
  `sinkable_load` and it'll generate a single FMA instruction.

* All `vfnmadd*` opcodes were added as well. These are pattern-matched
  where one of the arguments to the CLIF instruction is an `fneg`. I
  opted to not add a new CLIF instruction here since it seemed like
  pattern matching was easy enough but I'm also not intimately familiar
  with the semantics here so if that's the preferred approach I can do
  that too.
2023-02-21 20:51:22 +00:00
2020-02-28 09:16:05 -08:00
2023-02-14 19:45:15 +00:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat supported rustc stable Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS (locally) with a small install script:

curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.

  • Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.

  • Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation.

Languages supported by the Bytecode Alliance:

Languages supported by the community:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%