* Initial support for the Relaxed SIMD proposal This commit adds initial scaffolding and support for the Relaxed SIMD proposal for WebAssembly. Codegen support is supported on the x64 and AArch64 backends on this time. The purpose of this commit is to get all the boilerplate out of the way in terms of plumbing through a new feature, adding tests, etc. The tests are copied from the upstream repository at this time while the WebAssembly/testsuite repository hasn't been updated. A summary of changes made in this commit are: * Lowerings for all relaxed simd opcodes have been added, currently all exhibiting deterministic behavior. This means that few lowerings are optimal on the x86 backend, but on the AArch64 backend, for example, all lowerings should be optimal. * Support is added to codegen to, eventually, conditionally generate different code based on input codegen flags. This is intended to enable codegen to more efficient instructions on x86 by default, for example, while still allowing embedders to force architecture-independent semantics and behavior. One good example of this is the `f32x4.relaxed_fmadd` instruction which when deterministic forces the `fma` instruction, but otherwise if the backend doesn't have support for `fma` then intermediate operations are performed instead. * Lowerings of `iadd_pairwise` for `i16x8` and `i32x4` were added to the x86 backend as they're now exercised by the deterministic lowerings of relaxed simd instructions. * Sample codegen tests for added for x86 and aarch64 for some relaxed simd instructions. * Wasmtime embedder support for the relaxed-simd proposal and forcing determinism have been added to `Config` and the CLI. * Support has been added to the `*.wast` runtime execution for the `(either ...)` matcher used in the relaxed-simd proposal. * Tests for relaxed-simd are run both with a default `Engine` as well as a "force deterministic" `Engine` to test both configurations. * All tests from the upstream repository were copied into Wasmtime. These tests should be deleted when WebAssembly/testsuite is updated. * x64: Add x86-specific lowerings for relaxed simd This commit builds on the prior commit and adds an array of `x86_*` instructions to Cranelift which have semantics that match their corresponding x86 equivalents. Translation for relaxed simd is then additionally updated to conditionally generate different CLIF for relaxed simd instructions depending on whether the target is x86 or not. This means that for AArch64 no changes are made but for x86 most relaxed instructions now lower to some x86-equivalent with slightly different semantics than the "deterministic" lowering. * Add libcall support for fma to Wasmtime This will be required to implement the `f32x4.relaxed_madd` instruction (and others) when an x86 host doesn't specify the `has_fma` feature. * Ignore relaxed-simd tests on s390x and riscv64 * Enable relaxed-simd tests on s390x * Update cranelift/codegen/meta/src/shared/instructions.rs Co-authored-by: Andrew Brown <andrew.brown@intel.com> * Add a FIXME from review * Add notes about deterministic semantics * Don't default `has_native_fma` to `true` * Review comments and rebase fixes --------- Co-authored-by: Andrew Brown <andrew.brown@intel.com>
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS (locally) with a small install script:
curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.
-
Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.
-
Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation.
Languages supported by the Bytecode Alliance:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders, CMake orwasmtimeConan package - C++ - the
wasmtime-cpprepository or usewasmtime-cppConan package - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository - Ruby - the
wasmtimegem
Languages supported by the community:
- Elixir - the
wasmexhex package
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!
It's Wasmtime.