Michael Gattozzi 58bf9b7bba Fix wiggle code generation for correct span usage (#3220)
* Fix wiggle code generation for correct span usage

Up to this point when using wiggle to generate functions we could end up
with two types of functions an async or sync one with this proc macro

```
  #[allow(unreachable_code)] // deals with warnings in noreturn functions
  pub #asyncness fn #ident(
      ctx: &mut (impl #(#bounds)+*),
      memory: &dyn #rt::GuestMemory,
      #(#abi_params),*
  ) -> Result<#abi_ret, #rt::Trap> {
      use std::convert::TryFrom as _;

      let _span = #rt::tracing::span!(
          #rt::tracing::Level::TRACE,
          "wiggle abi",
          module = #mod_name,
          function = #func_name
      );
      let _enter = _span.enter();

      #body
  }
```

Now this might seem fine, we just create a span and enter it and run the
body code and we get async versions as well. However, this is where the
source of our problem lies. The impetus for this fix was seeing multiple
request IDs output in the logs for a single function call of a generated
function. Something was clearly happening that shouldn't have been. If
we take a look at the tracing docs here we can see why the above code
will not work in asynchronous code.

https://docs.rs/tracing/0.1.26/tracing/span/struct.Span.html#in-asynchronous-code

> Warning: in asynchronous code that uses async/await syntax,
> Span::enter should be used very carefully or avoided entirely.
> Holding the drop guard returned by Span::enter across .await points
> will result in incorrect traces.

The above documentation provides some more information, but what could
happen is that the `#body` itself could contain code that would await
and mess up the tracing that occurred and causing output that would be
completely nonsensical. The code itself should work fine in the
synchronous case though and in cases where await was not called again
inside the body as the future would poll to completion as if it was a
synchronous function.

The solution then is to use the newer `Instrument` trait which can make
sure that the span will be entered on every poll of the future. In order
to make sure that we have the same behavior as before we generate
synchronous functions and the ones that were async instead return a
future that uses the instrument trait. This way we can guarantee that
the span is created in synchronous code before being passed into a
future. This does change the function signature, but the functionality
itself is exactly as before and so we should see no actual difference in
how it's used by others. We also just to be safe call the synchronous
version's body with `in_scope` now as per the docs recommendation even
though it's more intended for calling sync code inside async functions.
Functionally it's the same as before with the call to enter. We also
bump the version of tracing uses so that wiggle can reexport tracing
with the instrument changes.

* Move function span generation out of if statement

We were duplicating the span creation code in our function generation in
wiggle. This commit moves it out into one spot so that we can reuse it
in both branches of the async/sync function generation.

* Make formatting consistent
2021-08-20 11:20:38 -05:00
2021-08-20 10:17:54 -05:00
2021-08-19 09:08:30 -05:00
2020-02-28 09:16:05 -08:00
2021-06-10 12:47:45 -05:00
2021-06-09 14:00:13 -05:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat supported rustc stable Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS with a small install script:

$ curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.

  • Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%