* Move `CompiledFunction` into wasmtime-cranelift This commit moves the `wasmtime_environ::CompiledFunction` type into the `wasmtime-cranelift` crate. This type has lots of Cranelift-specific pieces of compilation and doesn't need to be generated by all Wasmtime compilers. This replaces the usage in the `Compiler` trait with a `Box<Any>` type that each compiler can select. Each compiler must still produce a `FunctionInfo`, however, which is shared information we'll deserialize for each module. The `wasmtime-debug` crate is also folded into the `wasmtime-cranelift` crate as a result of this commit. One possibility was to move the `CompiledFunction` commit into its own crate and have `wasmtime-debug` depend on that, but since `wasmtime-debug` is Cranelift-specific at this time it didn't seem like it was too too necessary to keep it separate. If `wasmtime-debug` supports other backends in the future we can recreate a new crate, perhaps with it refactored to not depend on Cranelift. * Move wasmtime_environ::reference_type This now belongs in wasmtime-cranelift and nowhere else * Remove `Type` reexport in wasmtime-environ One less dependency on `cranelift-codegen`! * Remove `types` reexport from `wasmtime-environ` Less cranelift! * Remove `SourceLoc` from wasmtime-environ Change the `srcloc`, `start_srcloc`, and `end_srcloc` fields to a custom `FilePos` type instead of `ir::SourceLoc`. These are only used in a few places so there's not much to lose from an extra abstraction for these leaf use cases outside of cranelift. * Remove wasmtime-environ's dep on cranelift's `StackMap` This commit "clones" the `StackMap` data structure in to `wasmtime-environ` to have an independent representation that that chosen by Cranelift. This allows Wasmtime to decouple this runtime dependency of stack map information and let the two evolve independently, if necessary. An alternative would be to refactor cranelift's implementation into a separate crate and have wasmtime depend on that but it seemed a bit like overkill to do so and easier to clone just a few lines for this. * Define code offsets in wasmtime-environ with `u32` Don't use Cranelift's `binemit::CodeOffset` alias to define this field type since the `wasmtime-environ` crate will be losing the `cranelift-codegen` dependency soon. * Commit to using `cranelift-entity` in Wasmtime This commit removes the reexport of `cranelift-entity` from the `wasmtime-environ` crate and instead directly depends on the `cranelift-entity` crate in all referencing crates. The original reason for the reexport was to make cranelift version bumps easier since it's less versions to change, but nowadays we have a script to do that. Otherwise this encourages crates to use whatever they want from `cranelift-entity` since we'll always depend on the whole crate. It's expected that the `cranelift-entity` crate will continue to be a lean crate in dependencies and suitable for use at both runtime and compile time. Consequently there's no need to avoid its usage in Wasmtime at runtime, since "remove Cranelift at compile time" is primarily about the `cranelift-codegen` crate. * Remove most uses of `cranelift-codegen` in `wasmtime-environ` There's only one final use remaining, which is the reexport of `TrapCode`, which will get handled later. * Limit the glob-reexport of `cranelift_wasm` This commit removes the glob reexport of `cranelift-wasm` from the `wasmtime-environ` crate. This is intended to explicitly define what we're reexporting and is a transitionary step to curtail the amount of dependencies taken on `cranelift-wasm` throughout the codebase. For example some functions used by debuginfo mapping are better imported directly from the crate since they're Cranelift-specific. Note that this is intended to be a temporary state affairs, soon this reexport will be gone entirely. Additionally this commit reduces imports from `cranelift_wasm` and also primarily imports from `crate::wasm` within `wasmtime-environ` to get a better sense of what's imported from where and what will need to be shared. * Extract types from cranelift-wasm to cranelift-wasm-types This commit creates a new crate called `cranelift-wasm-types` and extracts type definitions from the `cranelift-wasm` crate into this new crate. The purpose of this crate is to be a shared definition of wasm types that can be shared both by compilers (like Cranelift) as well as wasm runtimes (e.g. Wasmtime). This new `cranelift-wasm-types` crate doesn't depend on `cranelift-codegen` and is the final step in severing the unconditional dependency from Wasmtime to `cranelift-codegen`. The final refactoring in this commit is to then reexport this crate from `wasmtime-environ`, delete the `cranelift-codegen` dependency, and then update all `use` paths to point to these new types. The main change of substance here is that the `TrapCode` enum is mirrored from Cranelift into this `cranelift-wasm-types` crate. While this unfortunately results in three definitions (one more which is non-exhaustive in Wasmtime itself) it's hopefully not too onerous and ideally something we can patch up in the future. * Get lightbeam compiling * Remove unnecessary dependency * Fix compile with uffd * Update publish script * Fix more uffd tests * Rename cranelift-wasm-types to wasmtime-types This reflects the purpose a bit more where it's types specifically intended for Wasmtime and its support. * Fix publish script
Cranelift Code Generator
A Bytecode Alliance project
Cranelift is a low-level retargetable code generator. It translates a target-independent intermediate representation into executable machine code.
For more information, see the documentation.
For an example of how to use the JIT, see the JIT Demo, which implements a toy language.
For an example of how to use Cranelift to run WebAssembly code, see Wasmtime, which implements a standalone, embeddable, VM using Cranelift.
Status
Cranelift currently supports enough functionality to run a wide variety of programs, including all the functionality needed to execute WebAssembly MVP functions, although it needs to be used within an external WebAssembly embedding to be part of a complete WebAssembly implementation.
The x86-64 backend is currently the most complete and stable; other architectures are in various stages of development. Cranelift currently supports both the System V AMD64 ABI calling convention used on many platforms and the Windows x64 calling convention. The performance of code produced by Cranelift is not yet impressive, though we have plans to fix that.
The core codegen crates have minimal dependencies, support no_std mode (see below), and do not require any host floating-point support, and do not use callstack recursion.
Cranelift does not yet perform mitigations for Spectre or related security issues, though it may do so in the future. It does not currently make any security-relevant instruction timing guarantees. It has seen a fair amount of testing and fuzzing, although more work is needed before it would be ready for a production use case.
Cranelift's APIs are not yet stable.
Cranelift currently requires Rust 1.37 or later to build.
Contributing
If you're interested in contributing to Cranelift: thank you! We have a contributing guide which will help you getting involved in the Cranelift project.
Planned uses
Cranelift is designed to be a code generator for WebAssembly, but it is general enough to be useful elsewhere too. The initial planned uses that affected its design are:
- WebAssembly compiler for the SpiderMonkey engine in Firefox.
- Backend for the IonMonkey JavaScript JIT compiler in Firefox.
- Debug build backend for the Rust compiler.
- Wasmtime non-Web wasm engine.
Building Cranelift
Cranelift uses a conventional Cargo build process.
Cranelift consists of a collection of crates, and uses a Cargo
Workspace,
so for some cargo commands, such as cargo test, the --all is needed
to tell cargo to visit all of the crates.
test-all.sh at the top level is a script which runs all the cargo
tests and also performs code format, lint, and documentation checks.
Building with no_std
The following crates support `no_std`, although they do depend on liballoc:
- cranelift-entity
- cranelift-bforest
- cranelift-codegen
- cranelift-frontend
- cranelift-native
- cranelift-wasm
- cranelift-module
- cranelift-preopt
- cranelift
To use no_std mode, disable the std feature and enable the core feature. This currently requires nightly rust.
For example, to build `cranelift-codegen`:
cd cranelift-codegen
cargo build --no-default-features --features core
Or, when using cranelift-codegen as a dependency (in Cargo.toml):
[dependency.cranelift-codegen]
...
default-features = false
features = ["core"]
no_std support is currently "best effort". We won't try to break it, and we'll accept patches fixing problems, however we don't expect all developers to build and test no_std when submitting patches. Accordingly, the ./test-all.sh script does not test no_std.
There is a separate ./test-no_std.sh script that tests the no_std support in packages which support it.
It's important to note that cranelift still needs liballoc to compile. Thus, whatever environment is used must implement an allocator.
Also, to allow the use of HashMaps with no_std, an external crate called hashmap_core is pulled in (via the core feature). This is mostly the same as std::collections::HashMap, except that it doesn't have DOS protection. Just something to think about.
Log configuration
Cranelift uses the log crate to log messages at various levels. It doesn't
specify any maximal logging level, so embedders can choose what it should be;
however, this can have an impact of Cranelift's code size. You can use log
features to reduce the maximum logging level. For instance if you want to limit
the level of logging to warn messages and above in release mode:
[dependency.log]
...
features = ["release_max_level_warn"]
Editor Support
Editor support for working with Cranelift IR (clif) files: