* x64: Add rudimentary support for some AVX instructions I was poking around Spidermonkey's wasm backend and saw that the various assembler functions used are all `v*`-prefixed which look like they're intended for use with AVX instructions. I looked at Cranelift and it currently doesn't have support for many AVX-based instructions, so I figured I'd take a crack at it! The support added here is a bit of a mishmash when viewed alone, but my general goal was to take a single instruction from the SIMD proposal for WebAssembly and migrate all of its component instructions to AVX. I, by random chance, picked a pretty complicated instruction of `f32x4.min`. This wasm instruction is implemented on x64 with 4 unique SSE instructions and ended up being a pretty good candidate. Further digging about AVX-vs-SSE shows that there should be two major benefits to using AVX over SSE: * Primarily AVX instructions largely use a three-operand form where two input registers are operated with and an output register is also specified. This is in contrast to SSE's predominant one-register-is-input-but-also-output pattern. This should help free up the register allocator a bit and additionally remove the need for movement between registers. * As #4767 notes the memory-based operations of VEX-encoded instructions (aka AVX instructions) do not have strict alignment requirements which means we would be able to sink loads and stores into individual instructions instead of having separate instructions. So I set out on my journey to implement the instructions used by `f32x4.min`. The first few were fairly easy. The machinst backends are already of the shape "take these inputs and compute the output" where the x86 requirement of a register being both input and output is postprocessed in. This means that the `inst.isle` creation helpers for SSE instructions were already of the correct form to use AVX. I chose to add new `rule` branches for the instruction creation helpers, for example `x64_andnps`. The new `rule` conditionally only runs if AVX is enabled and emits an AVX instruction instead of an SSE instruction for achieving the same goal. This means that no lowerings of clif instructions were modified, instead just new instructions are being generated. The VEX encoding was previously not heavily used in Cranelift. The only current user are the FMA-style instructions that Cranelift has at this time. These FMA instructions have one extra operand than `vandnps`, for example, so I split the existing `XmmRmRVex` into a few more variants to fit the shape of the instructions that needed generating for `f32x4.min`. This was accompanied then with more AVX opcode definitions, more emission support, etc. Upon implementing all of this it turned out that the test suite was failing on my machine due to the memory-operand encodings of VEX instructions not being supported. I didn't explicitly add those in myself but some preexisting RIP-relative addressing was leaking into the new instructions with existing tests. I opted to go ahead and fill out the memory addressing modes of VEX encoding to get the tests passing again. All-in-all this PR adds new instructions to the x64 backend for a number of AVX instructions, updates 5 existing instruction producers to use AVX instructions conditionally, implements VEX memory operands, and adds some simple tests for the new output of `f32x4.min`. The existing runtest for `f32x.min` caught a few intermediate bugs along the way and I additionally added a plain `target x86_64` to that runtest to ensure that it executes with and without AVX to test the various lowerings. I'll also note that this, and future support, should be well-fuzzed through Wasmtime's fuzzing which may explicitly disable AVX support despite the machine having access to AVX, so non-AVX lowerings should be well-tested into the future. It's also worth mentioning that I am not an AVX or VEX or x64 expert. Implementing the memory operand part for VEX was the hardest part of this PR and while I think it should be good someone else should definitely double-check me. Additionally I haven't added many instructions to the x64 backend yet so I may have missed obvious places to tests or such, so am happy to follow-up with anything to be more thorough if necessary. Finally I should note that this is just the tip of the iceberg when it comes to AVX. My hope is to get some of the idioms sorted out to make it easier for future PRs to add one-off instruction lowerings or such. * Review feedback
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS (locally) with a small install script:
curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.
-
Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.
-
Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation.
Languages supported by the Bytecode Alliance:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders, CMake orwasmtimeConan package - C++ - the
wasmtime-cpprepository or usewasmtime-cppConan package - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository - Ruby - the
wasmtimegem
Languages supported by the community:
- Elixir - the
wasmexhex package
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!
It's Wasmtime.