We previously had some off-by-one errors in our error messages and this led to
very confusing messages like "expected 0 types, found 0" that were quite
annoying to debug as an API consumer.
When encoding constants as immediates into an RSE Imm12 instruction we need to take special care to check if the value that we are trying to input does not overflow its type when viewed as a signed value. (i.e. iconst.i8 200)
We cannot both put an immediate and sign extend it, so we need to lower it into a separate reg, and emit the sign extend into the instruction.
For more details see the [cg_clif bug report](https://github.com/bjorn3/rustc_codegen_cranelift/issues/1184#issuecomment-873214796).
* Start a high-level architecture document for Wasmtime
This commit cleands up some existing documentation by removing a number
of "noop README files" and starting a high-level overview of the
architecture of Wasmtime. I've placed this documentation under the
contributing section of the book since it seems most useful for possible
contributors.
I've surely left some things out in this pass, and am happy to add more!
* Review comments
* More rewording
* typos
* Change the injection count of fuel in a store from u32 to u64
This commit updates the type of the amount of times to inject fuel in
the `out_of_fuel_async_yield` to `u64` instead of `u32`. This should
allow effectively infinite fuel to get injected, even if a small amount
of fuel is injected per iteration.
Closes#2927Closes#3046
* Fix tokio example
* cranelift: Initial fuzzer implementation
* cranelift: Generate multiple test cases in fuzzer
* cranelift: Separate function generator in fuzzer
* cranelift: Insert random instructions in fuzzer
* cranelift: Rename gen_testcase
* cranelift: Implement div for unsigned values in interpreter
* cranelift: Run all test cases in fuzzer
* cranelift: Comment options in function_runner
* cranelift: Improve fuzzgen README.md
* cranelift: Fuzzgen remove unused variable
* cranelift: Fuzzer code style fixes
Thanks! @bjorn3
* cranelift: Fix nits in CLIF fuzzer
Thanks @cfallin!
* cranelift: Implement Arbitrary for TestCase
* cranelift: Remove gen_testcase
* cranelift: Move fuzzers to wasmtime fuzz directory
* cranelift: CLIF-Fuzzer ignore tests that produce traps
* cranelift: CLIF-Fuzzer create new fuzz target to validate generated testcases
* cranelift: Store clif-fuzzer config in a separate struct
* cranelift: Generate variables upfront per function
* cranelift: Prevent publishing of fuzzgen crate
Also, reorganize the AArch64-specific VCode instructions for unary
narrowing and widening vector operations, so that they are more
straightforward to use.
Copyright (c) 2021, Arm Limited.
Clarify that they're executed not only around imports but also around
function calls. Additionally spell out the semantics around traps a bit
more clearly too.
As discussed in #3035, most backends have explicit
`unimplemented!(...)` match-arms for opcode lowering cases that are not
yet implemented; this allows the backend maintainer to easily see what
is not yet implemented, and avoiding a catch-all wildcard arm is less
error-prone as opcodes are added in the future.
However, the x64 backend was the exception: as @akirilov-arm pointed
out, it had a wildcard match arm. This fixes the issue by explicitly
listing all opcodes the x64 backend does not yet implement.
As per our tests, these opcodes are not used or need by Wasm lowering;
but, it is good to know that they exist, so that we can eventually
either support or remove them.
This was a good exercise for me as I wasn't aware of a few of these in
particular: e.g., aarch64 supports `bmask` while x64 does not, and there
isn't a good reason why x64 shouldn't, especially if others hope to use
Cranelift as a SIMD-capable general codegen in the future.
The `unimplemented!()` cases are separate from `panic!()` ones: my
convention here was to split out those that are logically just *missing*
from those that should be *impossible*, mostly due to expected removal
by legalization before we reach the lowering step.
Wasmtime was updated to reject creation of memories exactly 4gb in size
in #3013, but the fuzzers still had the assumption that any request to
create a host object for a particular wasm type would succeed.
Unfortunately now, though, a request to create a 4gb memory fails. This
is an expected failure, though, so the fix here was to catch the error
and allow it.
* wasi-common: update wasi submodule
This updates the WASI submodule, pulling in changes to the witx crate,
now that there is a 0.9.1 version including some bug fixes. See
WebAssembly/WASI#434 for more information.
* wiggle: update witx dependencies
* publish: verify and vendor witx-cli
* adjust root workspace members
This commit removes some items from the root manifest's workspace
members array, and adds `witx-cli` to the root `workspace.exclude`
array.
The motivation for this stems from a cargo bug described in
rust-lang/cargo#6745: `workspace.exclude` does not work if it is nested
under a `workspace.members` path.
See WebAssembly/WASI#438 for the underlying change to the WASI submodule
which reorganized the `witx-cli` crate, and WebAssembly/WASI#398 for the
original PR introducing `witx-cli`.
See [this
comment](https://github.com/bytecodealliance/wasmtime/pull/3025#issuecomment-867741175)
for more details about the compilation errors, and failed alternative
approaches that necessitated this change.
N.B. This is not a functional change, these crates are still implicitly
workspace members as transitive dependencies, but this will allow us to
side-step the aforementioned cargo bug.
Co-Authored-By: Alex Crichton <alex@alexcrichton.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
These backends will be removed in the future (see
bytecodealliance/rfcs#12 and the pending #3009 in this repo).
In the meantime, to more clearly communicate that they are using
"legacy" APIs and will eventually be removed, this PR places them in an
`isa/legacy/` subdirectory. No functional changes otherwise.
Implement the `TlsValue` opcode in the aarch64 backend for ELF_GD.
This is a little bit unusual as the default TLS mechanism for aarch64 is TLS Descriptors in other compilers.
However currently we only recognize elf_gd so lets start with that as a TLS implementation.
This increases the timeout from 50ms to 200ms, which makes the
tests reliably pass on my machine using the CI scripts againt
the s390x-linux-user qemu target.
This commit slims down the list of builtin intrinsics. It removes the
duplicated intrinsics for imported and locally defined items, instead
always using one intrinsic for both. This was previously inconsistently
applied where some intrinsics got two copies (one for imported one for
local) and other intrinsics got only one copy. This does add an extra
branch in intrinsics since they need to determine whether something is
local or not, but that's generally much lower cost than the intrinsics
themselves.
This also removes the `memory32_size` intrinsic, instead inlining the
codegen directly into the clif IR. This matches what the `table.size`
instruction does and removes the need for a few functions on a
`wasmtime_runtime::Instance`.
This commit removes some one-use methods to inline them at their use
site, and otherwise adds bounds checks to other functions like
`imported_function` where previously the `FuncIndex` may have been
accidentally out of bounds, which would cause memory unsafety. There's
no actual bug this was fixing, just trying to improve the safety of the
code internally a little.
The current_length member is defined as "usize" in Rust code,
but generated wasm code refers to it as if it were "u32".
While this happens to mostly work on little-endian machines
(as long as the length is < 4GB), it will always fail on
big-endian machines.
Fixed by making current_length "u32" in Rust as well, and
ensuring the actual memory size is always less than 4GB.
This adds enough support for the IaddIfcout opcode to make the
code emitted by dynamic_addr work on s390x.
Note: On s390x, the condition code mask that has to be used to
implement unsigned_add_overflow_condition does not match any of
the masks for the "normal" condition codes, so this design is
not really a good match for s390x ...
There has been occasional confusion with the representation that we use
for bool-typed values in registers, at least when these are wider than
one bit. Does a `b8` store `true` as 1, or as all-ones (`0xff`)?
We've settled on the latter because of some use-cases where the wide
bool becomes a mask -- see #2058 for more on this.
This is fine, and transparent, to most operations within CLIF, because
the bool-typed value still has only two semantically-visible states,
namely `true` and `false`.
However, we have to be careful with bool-to-int conversions. `bint` on
aarch64 correctly masked the all-ones value down to 0 or 1, as required
by the instruction specification, but on x64 it did not. This PR fixes
that bug and makes x64 consistent with aarch64.
While staring at this code I realized that `bextend` was also not
consistent with the all-ones invariant: it should do a sign-extend, not
a zero-extend as it previously did. This is also rectified and tested.
(Aarch64 also already had this case implemented correctly.)
Fixes#3003.
This code assumes that the Dirent structure has the same memory
layout on the host (Rust code) as in wasm code. This is not true
if the host is big-endian, as wasm is always little-endian.
Fixed by always byte-swapping Dirent fields to little-endian
before passing them on to wasm code.
The truncate_last_branch removes an instruction that had already
been added to the buffer, and must update various bookkeeping.
However, updating the "srclocs" field is incorrect: if there is
a srclocs entry that spans both the removed branch *and some
previous instruction*, that whole srclocs entry is removed,
which makes those previous instructions now uncovered by any
srclocs record. This can cause subsequent problems e.g. if
one of those instructions traps.
Fixed by just truncating instead of fully removing the srclocs
record in this case.