I'm not sure why when run repeatedly v8 has different limits on
call-stack-size but it's not particularly interesting to assert exact
matches here, so this should fix a fuzz-bug-failure found on oss-fuzz.
Implemented `SwidenLow` and `SwidenHigh` for the Cranelift interpreter,
doubling the width and halving the number of lanes preserving the low
and high halves respectively.
Conversions are performed using signed extension.
Copyright (c) 2021, Arm Limited
* Restore running precompiled modules with the CLI
This was accidentally broken when `Module::deserialize` was split out of
`Module::new` long ago, so this adds the detection in the CLI to call
the appropriate method to load the module. This feature is gated behind
an `--allow-precompiled` flag to enable, by default, passing arbitrary
user input to the `wasmtime` command.
Closes#3338
* Fix test on Windows
Modify the `poll_oneoff_files` test to avoid assuming that `poll_oneoff`
returns all pending events, as it may sometimes return only a subset of
events. When multiple events are expected, use a loop, and loop until
all events have been recorded.
There were cases where the AArch64 backend assumed that an IR
operation would always operate on certain types (the most likely
reason being that the corresponding WebAssembly instruction did
not cover anything else), even though the definition of the IR
operation imposed no constraints like that.
Copyright (c) 2021, Arm Limited.
When debug info was enabled, we would put the debug info sections in between the
text section and the unwind info section. But the unwind info is encoded in a
position-independent manner (so that we don't need relocs for it) that relies on
it directly following the text section. The result of the misplacement was some
crashes inside the unwinder.
We were previously using `_wasmtime_eh_frame` but there is no good reason to
add the prefix Wasmtime-specific prefix. Using the standard name allows for
better inspection with standard tools like `dwarfdump`.
* Remove the `wasmtime wasm2obj` command
This commit removes the `wasm2obj` subcommand of the `wasmtime` CLI.
This subcommand has a very long history and dates back quite far. While
it's existed, however, it's never been documented in terms of the output
it's produced. AFAIK it's only ever been used for debugging to see the
machine code output of Wasmtime on some modules. With recent changes to
the module serialization output the output of `wasmtime compile`, the
`*.cwasm` file, is now a native ELF file which can be fed to standard
tools like `objdump`. Consequently I dont think there's any remaining
need to keep `wasm2obj` around itself, so this commit removes the
subcommand.
* More code to delete
* Try to fix debuginfo tests
Implemented `UwidenLow` and `UwidenHigh` for the Cranelift interpreter,
doubling the width and halving the number of lanes preserving the low
and high halves respectively. Conversions are performed using unsigned
zero extension.
Copyright (c) 2021, Arm Limited
Implemented `Shuffle` for the Cranelift interpreter, to shuffle two SIMD
vectors together based on an immediate mask of 16 bytes.
Copyright (c) 2021, Arm Limited
Implemented for the Cranelift interpreter:
- `Bitrev` to reverse the order of the bits in an integer.
- `Cls` to count the leading bits which are the same as the sign bit in
an integer, yielding one less than the size of the integer for 0 and -1.
- `Clz` to count the number of leading zeros in the bitwise representation of the
integer.
- `Ctz` to count the number of trailing zeros in the bitwise representation of the
integer.
- `Popcnt` to count the number of ones in the bitwise representation of the
integer.
Copyright (c) 2021, Arm Limited
* Implement `Swizzle` and `Splat` for interpreter
Implemented for the Cranelift interpreter:
- `Swizzle` to shuffle an `i8x16` SIMD vector based
on the indices specified in another vector of the same size.
- `Splat` to create a SIMD vector with all lanes having the same value.
Copyright (c) 2021, Arm Limited
* Fix old x86 backend failing test
Copyright (c) 2021, Arm Limited
* Represent i16x8 and above as hex
Copyright (c) 2021, Arm Limited
* cranelift: Implement ZeroExtend for a bunch of types in interpreter
* cranelift: Implement VConst on interpreter
* cranelift: Implement VallTrue on interpreter
* cranelift: Implement VanyTrue on interpreter
* cranelift: Mark `v{all,any}_true` tests as machinst only
* cranelift: Disable `vany_true` tests on aarch64
The `b64x2` case produces an illegal instruction. See #3305
This commit improves the runtime support for wasm-to-host invocations
for functions created with `Func::new` or `wasmtime_func_new` in the C
API. Previously a `Vec` (sometimes a `SmallVec`) would be dynamically
allocated on each host call to store the arguments that are coming from
wasm and going to the host. In the case of the `wasmtime` crate we need
to decode the `u128`-stored values, and in the case of the C API we need
to decode the `Val` into the C API's `wasmtime_val_t`.
The technique used in this commit is to store a singular `Vec<T>` inside
the "store", be it the literal `Store<T>` or within the `T` in the case
of the C API, which can be reused across wasm->host calls. This means
that we're unlikely to actually perform dynamic memory allocation and
instead we should hit a faster path where the `Vec` always has enough
capacity.
Note that this is just a mild improvement for `Func::new`-based
functions. It's still the case that `Func::wrap` is much faster, but
unfortunately the C API doesn't have access to `Func::wrap`, so the main
motivation here is accelerating the C API.
* Refactor the internals of `Store<T>`
This commit is an overdue refactoring and renaming of some internals of
the `Store` type in Wasmtime. The actual implementation of `Store<T>`
has evolved from the original implementation to the point where some of
the aspects of how things are structured no longer makes sense. There's
also always been a lot of unnecessary gymnastics when trying to get
access to various store pieces depending on where you are in `wasmtime`.
This refactoring aims to simplify all this and make the internals much
easier to read/write. The following changes were made:
* The `StoreOpaque<'_>` type is deleted, along with the `opaque()`
method.
* The `StoreInnermost` type was renamed to `StoreOpaque`.
`StoreOpaque<'_>` is dead. Long live `StoreOpaque`. This renaming
and a few small tweaks means that this type now suffices for all
consumers.
* The `AsContextMut` and `AsContext` traits are now implemented for
`StoreInner<T>`.
These changes, while subtly small, help clean up a lot of the internals
of `wasmtime`. There's a lot less verbose `&mut
store.as_context_mut().opaque()` now. Additionally many methods can
simply start with `let store = store.as_context_mut().0;` and use things
internally. One of the nicer aspects of using references directly is
that the compiler automatically reborrows references as necessary
meaning there's lots of less manual reborrowing.
The main motivation for this change was actually somewhat roundabout
where I found that when `StoreOpaque<'_>` was being captured in closures
and iterators it's 3 pointers wide which is a lot of data to move
around. Now things capture over `&mut StoreOpaque` which is just one
nice and small pointer to move around. In any case though I've long
wanted to revisit the design of these internals to improve the
ergonomics. It's not expected that this change alone will really have
all that much impact on the performance of `wasmtime`.
Finally a doc comment was added to `store.rs` to try to explain all the
`Store`-related types since there are a nontrivial amount.
* Rustfmt
This commit optimizes the runtime execution of `Func::new` by removing
an indirect function call that happens whenever a host function is
called. This indirection was generally done to prevent monomoprhizing a
lot into consumer code but the few extra functions this makes
monomorphic are fairly small, and in general wasm->host call performance
is pretty important.
While not a massive win this is expected to improve codegen, especially
because with the indirect call removed the compiler should now be able
to prove more often when a `Func::new` closure doesn't panic or return
an error.