Commit Graph

12 Commits

Author SHA1 Message Date
Dan Gohman
c59e9180de Tidy up whitespace. 2018-03-05 06:55:27 -08:00
Julian Seward
7054f25abb Adds support to transform integer div and rem by constants into cheaper equivalents.
Adds support for transforming integer division and remainder by constants
into sequences that do not involve division instructions.

* div/rem by constant powers of two are turned into right shifts, plus some
  fixups for the signed cases.

* div/rem by constant non-powers of two are turned into double length
  multiplies by a magic constant, plus some fixups involving shifts,
  addition and subtraction, that depends on the constant, the word size and
  the signedness involved.

* The following cases are transformed: div and rem, signed or unsigned, 32
  or 64 bit.  The only un-transformed cases are: unsigned div and rem by
  zero, signed div and rem by zero or -1.

* This is all incorporated within a new transformation pass, "preopt", in
  lib/cretonne/src/preopt.rs.

* In preopt.rs, fn do_preopt() is the main driver.  It is designed to be
  extensible to transformations of other kinds of instructions.  Currently
  it merely uses a helper to identify div/rem transformation candidates and
  another helper to perform the transformation.

* In preopt.rs, fn get_div_info() pattern matches to find candidates, both
  cases where the second arg is an immediate, and cases where the second
  arg is an identifier bound to an immediate at its definition point.

* In preopt.rs, fn do_divrem_transformation() does the heavy lifting of the
  transformation proper.  It in turn uses magic{S,U}{32,64} to calculate the
  magic numbers required for the transformations.

* There are many test cases for the transformation proper:
    filetests/preopt/div_by_const_non_power_of_2.cton
    filetests/preopt/div_by_const_power_of_2.cton
    filetests/preopt/rem_by_const_non_power_of_2.cton
    filetests/preopt/rem_by_const_power_of_2.cton
    filetests/preopt/div_by_const_indirect.cton
  preopt.rs also contains a set of tests for magic number generation.

* The main (non-power-of-2) transformation requires instructions that return
  the high word of a double-length multiply.  For this, instructions umulhi
  and smulhi have been added to the core instruction set.  These will map
  directly to single instructions on most non-intel targets.

* intel does not have an instruction exactly like that.  For intel,
  instructions x86_umulx and x86_smulx have been added.  These map to real
  instructions and return both result words.  The intel legaliser will
  rewrite {s,u}mulhi into x86_{s,u}mulx uses that throw away the lower half
  word.  Tests:
    filetests/isa/intel/legalize-mulhi.cton (new file)
    filetests/isa/intel/binary64.cton (added x86_{s,u}mulx encoding tests)
2018-02-28 11:41:36 -08:00
Julian Seward
6f8a54b6a5 Adds support for legalizing CLZ, CTZ and POPCOUNT on baseline x86_64 targets.
Changes:

* Adds a new generic instruction, SELECTIF, that does value selection (a la
  conditional move) similarly to existing SELECT, except that it is
  controlled by condition code input and flags-register inputs.

* Adds a new Intel x86_64 variant, 'baseline', that supports SSE2 and
  nothing else.

* Adds new Intel x86_64 instructions BSR and BSF.

* Implements generic CLZ, CTZ and POPCOUNT on x86_64 'baseline' targets
  using the new BSR, BSF and SELECTIF instructions.

* Implements SELECTIF on x86_64 targets using conditional-moves.

* new test filetests/isa/intel/baseline_clz_ctz_popcount.cton
  (for legalization)

* new test filetests/isa/intel/baseline_clz_ctz_popcount_encoding.cton
  (for encoding)

* Allow lib/cretonne/meta/gen_legalizer.py to generate non-snake-caseified
  Rust without rustc complaining.

Fixes #238.
2018-02-06 09:43:00 -08:00
Tyler McMullen
1a11c351b5 Add tests and documentation for x86_(push|pop). Fix up encoding issues revealed by tests. 2017-12-05 11:49:12 -08:00
Tyler McMullen
4eb9a54096 Convert x86_(push|pop) operations to be explicitly limited to 32-bit and 64-bit values. 2017-12-05 11:49:12 -08:00
Tyler McMullen
b8275f5713 Add (some) encodings for x86_push/pop instructions. Simple uses actually pass the legalizer now. 2017-12-05 11:49:12 -08:00
Tyler McMullen
8ed37e352e Add x86_push and x86_pop instructions. 2017-12-05 11:49:12 -08:00
Jakob Stoklund Olesen
1fe7890700 Add x86_fmin and x86_fmax instructions.
These Intel-specific instructions represent the semantics of the minss /
maxss Intel instructions which behave more like a C ternary operator
than the WebAssembly fmin and fmax instructions.

They will be used as building blocks for implementing the WebAssembly
semantics.
2017-09-27 09:17:09 -07:00
Jakob Stoklund Olesen
ac69f3bfdf Add an Intel-specific x86_cvtt2si instruction.
This is used to represent the non-trapping semantics of the cvttss2si and
cvttsd2si instructions (and their vectorized counterparts).

The overflow behavior of this instruction is specific to the Intel ISAs.

There is no float-to-i64 instruction on the 32-bit Intel ISA.
2017-09-26 15:44:41 -07:00
Jakob Stoklund Olesen
54534e2147 Add Intel legalization for division and multiplication.
These operations need custom legalization in order to use Intel's div
and idiv instructions.
2017-07-28 16:41:59 -07:00
Dimo
b448574a49 Assert all InstructionGroups are closed in TargetIsa.__init__(); Close x86 group 2017-07-24 14:08:44 -07:00
Jakob Stoklund Olesen
c4db4c124b Begin an Intel-specific instruction group.
Add instructions representing Intel's division instructions which use a
numerator that is twice as wide as the denominator and produce both the
quotient and remainder.

Add encodings for the x86_[su]divmodx instructions.
2017-07-18 11:20:00 -07:00