Now that we can detach and reuse all values, there is no longer a need
to create a lot of alias values during pattern expansion. Instead, reuse
the values from the source pattern when emitting instructions in the
destination pattern.
If a destination instruction produces the exact same values as a source
instruction, simply leave the values attached and replace the
instruction it. Otherwise, detach the source values, reuse them in the
expansion, and remove the source instruction afterwards.
Now that we can detach and reuse all values, there is no longer a need
to create a lot of alias values during pattern expansion. Instead, reuse
the values from the source pattern when emitting instructions in the
destination pattern.
If a destination instruction produces the exact same values as a source
instruction, simply leave the values attached and replace the
instruction it. Otherwise, detach the source values, reuse them in the
expansion, and remove the source instruction afterwards.
This makes it possible to reuse one or more result values in the
instruction that is being inserted.
Also add a with_result(v) method for the common case of reusing a single
result value. This could be specialized in the future.
This makes it possible to reuse one or more result values in the
instruction that is being inserted.
Also add a with_result(v) method for the common case of reusing a single
result value. This could be specialized in the future.
These methods are used to reattach detached values:
- change_to_alias
- attach_result
- attach_ebb_arg
Add an assertion to all of them to ensure that the provided value is not
already attached somewhere else. Use a new value_is_attached() method
for the test.
Also include a verifier check for uses of detached values.
These methods are used to reattach detached values:
- change_to_alias
- attach_result
- attach_ebb_arg
Add an assertion to all of them to ensure that the provided value is not
already attached somewhere else. Use a new value_is_attached() method
for the test.
Also include a verifier check for uses of detached values.
All values are now references into the value table, so drop the
distinction between direct and table values. Direct values don't exist
any more.
Also remove the parser support for the 'vxNN' syntax. Only 'vNN' values
can be parsed now.
All values are now references into the value table, so drop the
distinction between direct and table values. Direct values don't exist
any more.
Also remove the parser support for the 'vxNN' syntax. Only 'vNN' values
can be parsed now.
Soon, InstructionData won't have sufficient information to compute this.
Give TargetIsa::encode() an explicit ctrl_typevar argument. This
function does not require the instruction to be inserted in the DFG
tables.
Soon, InstructionData won't have sufficient information to compute this.
Give TargetIsa::encode() an explicit ctrl_typevar argument. This
function does not require the instruction to be inserted in the DFG
tables.
Since results are in a value list, they don't need to form a linked
list any longer.
- Simplify make_inst_results() to create values in the natural order.
- Eliminate the last use of next_secondary_value().
- Delete unused result manipulation methods.
Since results are in a value list, they don't need to form a linked
list any longer.
- Simplify make_inst_results() to create values in the natural order.
- Eliminate the last use of next_secondary_value().
- Delete unused result manipulation methods.
We only ever create table values now.
Simplify legalizer::legalize_inst_results. Instead of calling
detach_secondary_results, just detach all the results and don't treat
the first result specially.
We only ever create table values now.
Simplify legalizer::legalize_inst_results. Instead of calling
detach_secondary_results, just detach all the results and don't treat
the first result specially.
We don't want to distinguish between single-result and multiple-result
instructions any longer.
- Merge the simple_instruction() and complex_instruction() builder
methods into a single build() that can handle all cases.
- All format constructors now take a ctrl_type argument. Previously,
some would take a result_type argument.
- Instruction constructors no longer attempt to compute a single result
type. Just pass a ctrl_type and let the backend decide.
Fix one format constructor call in legalizer/split.rs which now takes a
ctrl_type instead of a result type.
We don't want to distinguish between single-result and multiple-result
instructions any longer.
- Merge the simple_instruction() and complex_instruction() builder
methods into a single build() that can handle all cases.
- All format constructors now take a ctrl_type argument. Previously,
some would take a result_type argument.
- Instruction constructors no longer attempt to compute a single result
type. Just pass a ctrl_type and let the backend decide.
Fix one format constructor call in legalizer/split.rs which now takes a
ctrl_type instead of a result type.
Now we can access instruction results and arguments as well as EBB
arguments as slices.
Delete the Values iterator which was traversing the linked lists of
values. It is no longer needed.
Now we can access instruction results and arguments as well as EBB
arguments as slices.
Delete the Values iterator which was traversing the linked lists of
values. It is no longer needed.
This is the first step of a larger refactoring to represent instruction
results as value lists instead of using linked lists. The refactoring
will also eliminate the special treatment of first results such that all
result values can be detached and redefined.
This change put us in a temporary state where results are represented
both as linked lists and ValueList vectors.
- Add a dfg.results table.
- Add the first result in make_inst(). This behavior will change.
- Recompute the result list in make_inst_results().
- Make dfg.first_result(inst) crash if the instruction has no results.
This is the first step of a larger refactoring to represent instruction
results as value lists instead of using linked lists. The refactoring
will also eliminate the special treatment of first results such that all
result values can be detached and redefined.
This change put us in a temporary state where results are represented
both as linked lists and ValueList vectors.
- Add a dfg.results table.
- Add the first result in make_inst(). This behavior will change.
- Recompute the result list in make_inst_results().
- Make dfg.first_result(inst) crash if the instruction has no results.
This is the same as slice::first(), except it returns the first element
by value.
The implementation can avoid checking the list length since empty lists
already have a special representation.
This is the same as slice::first(), except it returns the first element
by value.
The implementation can avoid checking the list length since empty lists
already have a special representation.
- Add a dfg.is_inst_valid() method for the verifier.
- Use the inst_args_mut() method when rewriting values in the parser.
- Add a new branch_destination_mut() to use when rewriting EBBs.
This also gets rid of one of the large instruction format switches in
the parser.
- Add a dfg.is_inst_valid() method for the verifier.
- Use the inst_args_mut() method when rewriting values in the parser.
- Add a new branch_destination_mut() to use when rewriting EBBs.
This also gets rid of one of the large instruction format switches in
the parser.
Now that we have a value list of the arguments, we can get rid of:
- The first_arg and last_arg members in EbbData,
- The next member in the ValueData::Arg variant.
Now that we have a value list of the arguments, we can get rid of:
- The first_arg and last_arg members in EbbData,
- The next member in the ValueData::Arg variant.
Rather than returning the head of a linked list of EBB arguments, just
return the whole value list of all the arguments.
Delete the next_ebb_arg() method which was only used for traversing that
list.
Rather than returning the head of a linked list of EBB arguments, just
return the whole value list of all the arguments.
Delete the next_ebb_arg() method which was only used for traversing that
list.
This is the first step of the value list refactoring which will replace
linked lists of values with value lists.
- Keep a ValueList in the EbbData struct containing all the EBB
arguments.
- Change dfg.ebb_args() to return a slice instead of an iterator.
This leaves us in a temporary hybrid state where we maintain both a
linked list and a ValueList vector of the EBB arguments.
This is the first step of the value list refactoring which will replace
linked lists of values with value lists.
- Keep a ValueList in the EbbData struct containing all the EBB
arguments.
- Change dfg.ebb_args() to return a slice instead of an iterator.
This leaves us in a temporary hybrid state where we maintain both a
linked list and a ValueList vector of the EBB arguments.