error[E0425]: cannot find value `ones` in this scope
--> cranelift-codegen/meta/src/isa/x86/legalize.rs:564:33
|
564 | def!(c = vconst(ones)),
| ^^^^ not found in this scope
Previously `fsub` was used but this fails when negating -0.0 and +0.0 in the SIMD spec tests; using more instructions, this change uses shifts to create a constant for flipping the most significant bit of each lane with `bxor`.
Previously, the use of `enc_x86_64` emitted two 64-bit mode encodings for `scalar_to_vector.i64`, neither of which contained the REX.W bit telling `MOVD/MOVQ` to move 64 bits of data instead of 32 bits. Now, `scalar_to_vector.i64` will always use a sole 64-bit mode REX.W encoding and `scalar_to_vector` with other widths will have three encodings: a 32-bit mode move, a 64-bit mode move with no REX, and a 64-bit mode move with REX (but not REX.W).
This introduces a script that has a high probability of failing if the
Rust source code generated by the meta crate is not consistent accross
build script runs.
It also adds a new CI job to run it on each push, on a single platform.
This removes `report!`, `fatal!`, and `nonfatal!` from the verifier code and replaces them with methods on `VerifierErrors`. In order to maintain similar ease-of-use, `VerifierError` is expanded with several `From` implementations that convert a tuple to a verifier error.
This commit removes the dependency on `byteorder::ReadBytesExt`, which can't be
used from `no_std`, which is how we're building the `byteorder` crate.
The fix is to simply offset into the slice as needed rather than using a
`std::io::Cursor`.
Fixes#1225.
Due to SIMD's v128 operations, vectors that may have had an explicit type (e.g. f32x4) before a v128 operation will subsequently have CLIF's v128 stand-in type: i8x16. In order for follow-on operations (that may be more stricly typed, e.g. f32x4.add) to avoid CLIF errors, we must bitcast them back to the operation type. The raw_bitcast operation used to do this emits no machine code but does incur some small compile-time cost; it would be nice to avoid this in the future.
* Try and assign directly to return registers; backtrack to use struct-return param
Rather than trying to count number of return registers that would be used by a
given set of return values, optimistically assign the return values to
registers. If we later find that we can't fit them all in registers, then
backtrack and introduce the use of a struct-return pointer parameter.
* Rename `rets2` and wrap it in an option so we avoid the clone for non-multi-value