57dca934adac77a393cc943500615652003ff36e
584 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
57dca934ad |
Upgrade wasm-tools crates, namely the component model (#4715)
* Upgrade wasm-tools crates, namely the component model This commit pulls in the latest versions of all of the `wasm-tools` family of crates. There were two major changes that happened in `wasm-tools` in the meantime: * bytecodealliance/wasm-tools#697 - this commit introduced a new API for more efficiently reading binary operators from a wasm binary. The old `Operator`-based reading was left in place, however, and continues to be what Wasmtime uses. I hope to update Wasmtime in a future PR to use this new API, but for now the biggest change is... * bytecodealliance/wasm-tools#703 - this commit was a major update to the component model AST. This commit almost entirely deals with the fallout of this change. The changes made to the component model were: 1. The `unit` type no longer exists. This was generally a simple change where the `Unit` case in a few different locations were all removed. 2. The `expected` type was renamed to `result`. This similarly was relatively lightweight and mostly just a renaming on the surface. I took this opportunity to rename `val::Result` to `val::ResultVal` and `types::Result` to `types::ResultType` to avoid clashing with the standard library types. The `Option`-based types were handled with this as well. 3. The payload type of `variant` and `result` types are now optional. This affected many locations that calculate flat type representations, ABI information, etc. The `#[derive(ComponentType)]` macro now specifically handles Rust-defined `enum` types which have no payload to the equivalent in the component model. 4. Functions can now return multiple parameters. This changed the signature of invoking component functions because the return value is now bound by `ComponentNamedList` (renamed from `ComponentParams`). This had a large effect in the tests, fuzz test case generation, etc. 5. Function types with 2-or-more parameters/results must uniquely name all parameters/results. This mostly affected the text format used throughout the tests. I haven't added specifically new tests for multi-return but I changed a number of tests to use it. Additionally I've updated the fuzzers to all exercise multi-return as well so I think we should get some good coverage with that. * Update version numbers * Use crates.io |
||
|
|
ae7688059d |
Cranelift: Use bump allocation in remove_constant_phis pass (#4710)
* Cranelift: Use bump allocation in `remove_constant_phis` pass This makes compilation 2-6% faster for Sightglass's bz2 benchmark: ``` compilation :: cycles :: benchmarks/bz2/benchmark.wasm Δ = 7290648.36 ± 4245152.07 (confidence = 99%) bump.so is 1.02x to 1.06x faster than main.so! [166388177 183238542.98 214732518] bump.so [172836648 190529191.34 217514271] main.so compilation :: cycles :: benchmarks/pulldown-cmark/benchmark.wasm No difference in performance. [182220055 225793551.12 277857575] bump.so [193212613 227784078.61 277175335] main.so compilation :: cycles :: benchmarks/spidermonkey/benchmark.wasm No difference in performance. [3848442474 4295214144.37 4665127241] bump.so [3969505457 4262415290.10 4563869974] main.so ``` * Add audit for `bumpalo` * Add an audit of `arrayvec` version 0.7.2 * Remove unnecessary `collect` into `Vec` I wasn't able to measure any perf difference here, but its nice to do anyways. * Use a `SecondaryMap` for keeping track of summaries |
||
|
|
8a9b1a9025 |
Implement an incremental compilation cache for Cranelift (#4551)
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. After the suggestion of Chris, `Function` has been split into mostly two parts: - on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`. - on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on. Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache: - most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set. - user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`. - some refactorings have been made for function names: - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name. - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with. The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions. A basic fuzz target has been introduced that tries to do the bare minimum: - check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function. - check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache. - This last check is less efficient and less likely to happen, so probably should be rethought a bit. Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip. Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. Fixes #4155. |
||
|
|
30e2a9bd29 |
cranelift: Upgrade libm to 0.2.4 (#4670)
* cranelift: Upgrade libm to 0.2.4 This resolves an issue with incorrect fmaf on the x86_64-pc-windows-gnu target under some inputs. See: #4517 * supply-chain: Vet `libm` 0.2.4 |
||
|
|
4d2a2cfae6 |
cranelift: Use cranelift-jit in runtests (#4453)
* cranelift: Use JIT in runtests Using `cranelift-jit` in run tests allows us to preform relocations and libcalls. This is important since some instruction lowerings fallback to libcall's when an extension is missing, or when it's too complicated to implement manually. This is also a first step to being able to test `call`'s between functions in the runtest suite. It should also make it easier to eventually test TLS relocations, symbol resolution and ABI's. Another benefit of this is that we also get to test the JIT more, since it now runs the runtests, and gets some fuzzing via `fuzzgen` (which uses the `SingleFunctionCompiler`). This change causes regressions in terms of runtime for the filetests. I haven't done any serious benchmarking but what I've been seeing is that it now takes about ~3 seconds to run the testsuite while it previously took around 2 seconds. * Add FMA tests for X86 |
||
|
|
bd70dbebbd |
Deduplicate some size/align calculations (#4658)
This commit is an effort to reduce the amount of complexity around managing the size/alignment calculations of types in the canonical ABI. Previously the logic for the size/alignment of a type was spread out across a number of locations. While each individual calculation is not really the most complicated thing in the world having the duplication in so many places was constantly worrying me. I've opted in this commit to centralize all of this within the runtime at least, and now there's only one "duplicate" of this information in the fuzzing infrastructure which is to some degree less important to deduplicate. This commit introduces a new `CanonicalAbiInfo` type to house all abi size/align information for both memory32 and memory64. This new type is then used pervasively throughout fused adapter compilation, dynamic `Val` management, and typed functions. This type was also able to reduce the complexity of the macro-generated code meaning that even `wasmtime-component-macro` is performing less math than it was before. One other major feature of this commit is that this ABI information is now saved within a `ComponentTypes` structure. This avoids recursive querying of size/align information frequently and instead effectively caching it. This was a worry I had for the fused adapter compiler which frequently sought out size/align information and would recursively descend each type tree each time. The `fact-valid-module` fuzzer is now nearly 10x faster in terms of iterations/s which I suspect is due to this caching. |
||
|
|
650979ae40 |
Implement strings in adapter modules (#4623)
* Implement strings in adapter modules This commit is a hefty addition to Wasmtime's support for the component model. This implements the final remaining type (in the current type hierarchy) unimplemented in adapter module trampolines: strings. Strings are the most complicated type to implement in adapter trampolines because they are highly structured chunks of data in memory (according to specific encodings). Additionally each lift/lower operation can choose its own encoding for strings meaning that Wasmtime, the host, may have to convert between any pairwise ordering of string encodings. The `CanonicalABI.md` in the component-model repo in general specifies all the fiddly bits of string encoding so there's not a ton of wiggle room for Wasmtime to get creative. This PR largely "just" implements that. The high-level architecture of this implementation is: * Fused adapters are first identified to determine src/dst string encodings. This statically fixes what transcoding operation is being performed. * The generated adapter will be responsible for managing calls to `realloc` and performing bounds checks. The adapter itself does not perform memory copies or validation of string contents, however. Instead each transcoding operation is modeled as an imported function into the adapter module. This means that the adapter module dynamically, during compile time, determines what string transcoders are needed. Note that an imported transcoder is not only parameterized over the transcoding operation but additionally which memory is the source and which is the destination. * The imported core wasm functions are modeled as a new `CoreDef::Transcoder` structure. These transcoders end up being small Cranelift-compiled trampolines. The Cranelift-compiled trampoline will load the actual base pointer of memory and add it to the relative pointers passed as function arguments. This trampoline then calls a transcoder "libcall" which enters Rust-defined functions for actual transcoding operations. * Each possible transcoding operation is implemented in Rust with a unique name and a unique signature depending on the needs of the transcoder. I've tried to document inline what each transcoder does. This means that the `Module::translate_string` in adapter modules is by far the largest translation method. The main reason for this is due to the management around calling the imported transcoder functions in the face of validating string pointer/lengths and performing the dance of `realloc`-vs-transcode at the right time. I've tried to ensure that each individual case in transcoding is documented well enough to understand what's going on as well. Additionally in this PR is a full implementation in the host for the `latin1+utf16` encoding which means that both lifting and lowering host strings now works with this encoding. Currently the implementation of each transcoder function is likely far from optimal. Where possible I've leaned on the standard library itself and for latin1-related things I'm leaning on the `encoding_rs` crate. I initially tried to implement everything with `encoding_rs` but was unable to uniformly do so easily. For now I settled on trying to get a known-correct (even in the face of endianness) implementation for all of these transcoders. If an when performance becomes an issue it should be possible to implement more optimized versions of each of these transcoding operations. Testing this commit has been somewhat difficult and my general plan, like with the `(list T)` type, is to rely heavily on fuzzing to cover the various cases here. In this PR though I've added a simple test that pushes some statically known strings through all the pairs of encodings between source and destination. I've attempted to pick "interesting" strings that one way or another stress the various paths in each transcoding operation to ideally get full branch coverage there. Additionally a suite of "negative" tests have also been added to ensure that validity of encoding is actually checked. * Fix a temporarily commented out case * Fix wasmtime-runtime tests * Update deny.toml configuration * Add `BSD-3-Clause` for the `encoding_rs` crate * Remove some unused licenses * Add an exemption for `encoding_rs` for now * Split up the `translate_string` method Move out all the closures and package up captured state into smaller lists of arguments. * Test out-of-bounds for zero-length strings |
||
|
|
412fa04911 |
Bump Wasmtime to 0.41.0 (#4620)
Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com> |
||
|
|
b4d7ab36f9 |
Add a dataflow-based representation of components (#4597)
* Add a dataflow-based representation of components This commit updates the inlining phase of compiling a component to creating a dataflow-based representation of a component instead of creating a final `Component` with a linear list of initializers. This dataflow graph is then linearized in a final step to create the actual final `Component`. The motivation for this commit stems primarily from my work implementing strings in fused adapters. In doing this my plan is to defer most low-level transcoding to the host itself rather than implementing that in the core wasm adapter modules. This means that small cranelift-generated trampolines will be used for adapter modules to call which then call "transcoding libcalls". The cranelift-generated trampolines will get raw pointers into linear memory and pass those to the libcall which core wasm doesn't have access to when passing arguments to an import. Implementing this with the previous representation of a `Component` was becoming too tricky to bear. The initialization of a transcoder needed to happen at just the right time: before the adapter module which needed it was instantiated but after the linear memories referenced had been extracted into the `VMComponentContext`. The difficulty here is further compounded by the current adapter module injection pass already being quite complicated. Adapter modules are already renumbering the index space of runtime instances and shuffling items around in the `GlobalInitializer` list. Perhaps the worst part of this was that memories could already be referenced by host function imports or exports to the host, and if adapters referenced the same memory it shouldn't be referenced twice in the component. This meant that `ExtractMemory` initializers ideally needed to be shuffled around in the initializer list to happen as early as possible instead of wherever they happened to show up during translation. Overall I did my best to implement the transcoders but everything always came up short. I have decided to throw my hands up in the air and try a completely different approach to this, namely the dataflow-based representation in this commit. This makes it much easier to edit the component after initial translation for injection of adapters, injection of transcoders, adding dependencies on possibly-already-existing items, etc. The adapter module partitioning pass in this commit was greatly simplified to something which I believe is functionally equivalent but is probably an order of magnitude easier to understand. The biggest downside of this representation I believe is having a duplicate representation of a component. The `component::info` was largely duplicated into the `component::dfg` module in this commit. Personally though I think this is a more appropriate tradeoff than before because it's very easy to reason about "convert representation A to B" code whereas it was very difficult to reason about shuffling around `GlobalInitializer` items in optimal fashions. This may also have a cost at compile-time in terms of shuffling data around, but my hope is that we have lots of other low-hanging fruit to optimize if it ever comes to that which allows keeping this easier-to-understand representation. Finally, to reiterate, the final representation of components is not changed by this PR. To the runtime internals everything is still the same. * Fix compile of factc |
||
|
|
ed8908efcf |
implement fuzzing for component types (#4537)
This addresses #4307. For the static API we generate 100 arbitrary test cases at build time, each of which includes 0-5 parameter types, a result type, and a WAT fragment containing an imported function and an exported function. The exported function calls the imported function, which is implemented by the host. At runtime, the fuzz test selects a test case at random and feeds it zero or more sets of arbitrary parameters and results, checking that values which flow host-to-guest and guest-to-host make the transition unchanged. The fuzz test for the dynamic API follows a similar pattern, the only difference being that test cases are generated at runtime. Signed-off-by: Joel Dice <joel.dice@fermyon.com> |
||
|
|
f69acd6187 |
Upgrade regalloc2 -> 0.3.2 (#4603)
Includes a modest improvement in memory usage and performance by removing analysis that was only used during fuzzing. |
||
|
|
fb59de15af |
Implement fused adapters for (list T) types (#4558)
* Implement fused adapters for `(list T)` types This commit implements one of the two remaining types for adapter fusion, lists. This implementation is particularly tricky for a number of reasons: * Lists have a number of validity checks which need to be carefully implemented. For example the byte length of the list passed to allocation in the destination module could overflow the 32-bit index space. Additionally lists in 32-bit memories need a check that their final address is in-bounds in the address space. * In the effort to go ahead and support memory64 at the lowest layers this is where much of the magic happens. Lists are naturally always stored in memory and shifting between 64/32-bit address spaces is done here. This notably required plumbing an `Options` around during flattening/size/alignment calculations due to the size/types of lists changing depending on the memory configuration. I've also added a small `factc` program in this commit which should hopefully assist in exploring and debugging adapter modules. This takes as input a component (text or binary format) and then generates an adapter module for all component function signatures found internally. This commit notably does not include tests for lists. I tried to figure out a good way to add these but I felt like there were too many cases to test and the tests would otherwise be extremely verbose. Instead I think the best testing strategy for this commit will be through #4537 which should be relatively extensible to testing adapters between modules in addition to host-based lifting/lowering. * Improve handling of lists of 0-size types * Skip overflow checks on byte sizes for 0-size types * Skip the copy loop entirely when src/dst are both 0 * Skip the increments of src/dst pointers if either is 0-size * Update semantics for zero-sized lists/strings When a list/string has a 0-byte-size the base pointer is no longer verified to be in-bounds to match the supposedly desired adapter semantics where no trap happens because no turn of the loop happens. |
||
|
|
1f058a02c0 |
cranelift: Add MinGW fma regression tests (#4517)
* cranelift: Add MinGW `fma` regression tests * cranelift: Fix FMA in interpreter * cranelift: Add separate `fma` test suite for the interpreter The interpreter can run `fma.clif` on most platforms, however on `x86_64-pc-windows-gnu` we use libm which has issues with some inputs. We should delete `fma-interpreter.clif` and enable the interpreter on the main `fma.clif` file once those are fixed. |
||
|
|
46782b18c2 |
wasmtime: Implement fast Wasm stack walking (#4431)
* Always preserve frame pointers in Wasmtime
This allows us to efficiently and simply capture Wasm stacks without maintaining
and synchronizing any safety-critical side tables between the compiler and the
runtime.
* wasmtime: Implement fast Wasm stack walking
Why do we want Wasm stack walking to be fast? Because we capture stacks whenever
there is a trap and traps actually happen fairly frequently with short-lived
programs and WASI's `exit`.
Previously, we would rely on generating the system unwind info (e.g.
`.eh_frame`) and using the system unwinder (via the `backtrace`crate) to walk
the full stack and filter out any non-Wasm stack frames. This can,
unfortunately, be slow for two primary reasons:
1. The system unwinder is doing `O(all-kinds-of-frames)` work rather than
`O(wasm-frames)` work.
2. System unwind info and the system unwinder need to be much more general than
a purpose-built stack walker for Wasm needs to be. It has to handle any kind of
stack frame that any compiler might emit where as our Wasm frames are emitted by
Cranelift and always have frame pointers. This translates into implementation
complexity and general overhead. There can also be unnecessary-for-our-use-cases
global synchronization and locks involved, further slowing down stack walking in
the presence of multiple threads trying to capture stacks in parallel.
This commit introduces a purpose-built stack walker for traversing just our Wasm
frames. To find all the sequences of Wasm-to-Wasm stack frames, and ignore
non-Wasm stack frames, we keep a linked list of `(entry stack pointer, exit
frame pointer)` pairs. This linked list is maintained via Wasm-to-host and
host-to-Wasm trampolines. Within a sequence of Wasm-to-Wasm calls, we can use
frame pointers (which Cranelift preserves) to find the next older Wasm frame on
the stack, and we keep doing this until we reach the entry stack pointer,
meaning that the next older frame will be a host frame.
The trampolines need to avoid a couple stumbling blocks. First, they need to be
compiled ahead of time, since we may not have access to a compiler at
runtime (e.g. if the `cranelift` feature is disabled) but still want to be able
to call functions that have already been compiled and get stack traces for those
functions. Usually this means we would compile the appropriate trampolines
inside `Module::new` and the compiled module object would hold the
trampolines. However, we *also* need to support calling host functions that are
wrapped into `wasmtime::Func`s and there doesn't exist *any* ahead-of-time
compiled module object to hold the appropriate trampolines:
```rust
// Define a host function.
let func_type = wasmtime::FuncType::new(
vec![wasmtime::ValType::I32],
vec![wasmtime::ValType::I32],
);
let func = Func::new(&mut store, func_type, |_, params, results| {
// ...
Ok(())
});
// Call that host function.
let mut results = vec![wasmtime::Val::I32(0)];
func.call(&[wasmtime::Val::I32(0)], &mut results)?;
```
Therefore, we define one host-to-Wasm trampoline and one Wasm-to-host trampoline
in assembly that work for all Wasm and host function signatures. These
trampolines are careful to only use volatile registers, avoid touching any
register that is an argument in the calling convention ABI, and tail call to the
target callee function. This allows forwarding any set of arguments and any
returns to and from the callee, while also allowing us to maintain our linked
list of Wasm stack and frame pointers before transferring control to the
callee. These trampolines are not used in Wasm-to-Wasm calls, only when crossing
the host-Wasm boundary, so they do not impose overhead on regular calls. (And if
using one trampoline for all host-Wasm boundary crossing ever breaks branch
prediction enough in the CPU to become any kind of bottleneck, we can do fun
things like have multiple copies of the same trampoline and choose a random copy
for each function, sharding the functions across branch predictor entries.)
Finally, this commit also ends the use of a synthetic `Module` and allocating a
stubbed out `VMContext` for host functions. Instead, we define a
`VMHostFuncContext` with its own magic value, similar to `VMComponentContext`,
specifically for host functions.
<h2>Benchmarks</h2>
<h3>Traps and Stack Traces</h3>
Large improvements to taking stack traces on traps, ranging from shaving off 64%
to 99.95% of the time it used to take.
<details>
```
multi-threaded-traps/0 time: [2.5686 us 2.5808 us 2.5934 us]
thrpt: [0.0000 elem/s 0.0000 elem/s 0.0000 elem/s]
change:
time: [-85.419% -85.153% -84.869%] (p = 0.00 < 0.05)
thrpt: [+560.90% +573.56% +585.84%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
multi-threaded-traps/1 time: [2.9021 us 2.9167 us 2.9322 us]
thrpt: [341.04 Kelem/s 342.86 Kelem/s 344.58 Kelem/s]
change:
time: [-91.455% -91.294% -91.096%] (p = 0.00 < 0.05)
thrpt: [+1023.1% +1048.6% +1070.3%]
Performance has improved.
Found 6 outliers among 100 measurements (6.00%)
1 (1.00%) high mild
5 (5.00%) high severe
multi-threaded-traps/2 time: [2.9996 us 3.0145 us 3.0295 us]
thrpt: [660.18 Kelem/s 663.47 Kelem/s 666.76 Kelem/s]
change:
time: [-94.040% -93.910% -93.762%] (p = 0.00 < 0.05)
thrpt: [+1503.1% +1542.0% +1578.0%]
Performance has improved.
Found 5 outliers among 100 measurements (5.00%)
5 (5.00%) high severe
multi-threaded-traps/4 time: [5.5768 us 5.6052 us 5.6364 us]
thrpt: [709.68 Kelem/s 713.63 Kelem/s 717.25 Kelem/s]
change:
time: [-93.193% -93.121% -93.052%] (p = 0.00 < 0.05)
thrpt: [+1339.2% +1353.6% +1369.1%]
Performance has improved.
multi-threaded-traps/8 time: [8.6408 us 9.1212 us 9.5438 us]
thrpt: [838.24 Kelem/s 877.08 Kelem/s 925.84 Kelem/s]
change:
time: [-94.754% -94.473% -94.202%] (p = 0.00 < 0.05)
thrpt: [+1624.7% +1709.2% +1806.1%]
Performance has improved.
multi-threaded-traps/16 time: [10.152 us 10.840 us 11.545 us]
thrpt: [1.3858 Melem/s 1.4760 Melem/s 1.5761 Melem/s]
change:
time: [-97.042% -96.823% -96.577%] (p = 0.00 < 0.05)
thrpt: [+2821.5% +3048.1% +3281.1%]
Performance has improved.
Found 1 outliers among 100 measurements (1.00%)
1 (1.00%) high mild
many-modules-registered-traps/1
time: [2.6278 us 2.6361 us 2.6447 us]
thrpt: [378.11 Kelem/s 379.35 Kelem/s 380.55 Kelem/s]
change:
time: [-85.311% -85.108% -84.909%] (p = 0.00 < 0.05)
thrpt: [+562.65% +571.51% +580.76%]
Performance has improved.
Found 9 outliers among 100 measurements (9.00%)
3 (3.00%) high mild
6 (6.00%) high severe
many-modules-registered-traps/8
time: [2.6294 us 2.6460 us 2.6623 us]
thrpt: [3.0049 Melem/s 3.0235 Melem/s 3.0425 Melem/s]
change:
time: [-85.895% -85.485% -85.022%] (p = 0.00 < 0.05)
thrpt: [+567.63% +588.95% +608.95%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
3 (3.00%) high mild
5 (5.00%) high severe
many-modules-registered-traps/64
time: [2.6218 us 2.6329 us 2.6452 us]
thrpt: [24.195 Melem/s 24.308 Melem/s 24.411 Melem/s]
change:
time: [-93.629% -93.551% -93.470%] (p = 0.00 < 0.05)
thrpt: [+1431.4% +1450.6% +1469.5%]
Performance has improved.
Found 3 outliers among 100 measurements (3.00%)
3 (3.00%) high mild
many-modules-registered-traps/512
time: [2.6569 us 2.6737 us 2.6923 us]
thrpt: [190.17 Melem/s 191.50 Melem/s 192.71 Melem/s]
change:
time: [-99.277% -99.268% -99.260%] (p = 0.00 < 0.05)
thrpt: [+13417% +13566% +13731%]
Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
4 (4.00%) high mild
many-modules-registered-traps/4096
time: [2.7258 us 2.7390 us 2.7535 us]
thrpt: [1.4876 Gelem/s 1.4955 Gelem/s 1.5027 Gelem/s]
change:
time: [-99.956% -99.955% -99.955%] (p = 0.00 < 0.05)
thrpt: [+221417% +223380% +224881%]
Performance has improved.
Found 2 outliers among 100 measurements (2.00%)
1 (1.00%) high mild
1 (1.00%) high severe
many-stack-frames-traps/1
time: [1.4658 us 1.4719 us 1.4784 us]
thrpt: [676.39 Kelem/s 679.38 Kelem/s 682.21 Kelem/s]
change:
time: [-90.368% -89.947% -89.586%] (p = 0.00 < 0.05)
thrpt: [+860.23% +894.72% +938.21%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
5 (5.00%) high mild
3 (3.00%) high severe
many-stack-frames-traps/8
time: [2.4772 us 2.4870 us 2.4973 us]
thrpt: [3.2034 Melem/s 3.2167 Melem/s 3.2294 Melem/s]
change:
time: [-85.550% -85.370% -85.199%] (p = 0.00 < 0.05)
thrpt: [+575.65% +583.51% +592.03%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
many-stack-frames-traps/64
time: [10.109 us 10.171 us 10.236 us]
thrpt: [6.2525 Melem/s 6.2925 Melem/s 6.3309 Melem/s]
change:
time: [-78.144% -77.797% -77.336%] (p = 0.00 < 0.05)
thrpt: [+341.22% +350.38% +357.55%]
Performance has improved.
Found 7 outliers among 100 measurements (7.00%)
5 (5.00%) high mild
2 (2.00%) high severe
many-stack-frames-traps/512
time: [126.16 us 126.54 us 126.96 us]
thrpt: [4.0329 Melem/s 4.0461 Melem/s 4.0583 Melem/s]
change:
time: [-65.364% -64.933% -64.453%] (p = 0.00 < 0.05)
thrpt: [+181.32% +185.17% +188.71%]
Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
4 (4.00%) high severe
```
</details>
<h3>Calls</h3>
There is, however, a small regression in raw Wasm-to-host and host-to-Wasm call
performance due the new trampolines. It seems to be on the order of about 2-10
nanoseconds per call, depending on the benchmark.
I believe this regression is ultimately acceptable because
1. this overhead will be vastly dominated by whatever work a non-nop callee
actually does,
2. we will need these trampolines, or something like them, when implementing the
Wasm exceptions proposal to do things like translate Wasm's exceptions into
Rust's `Result`s,
3. and because the performance improvements to trapping and capturing stack
traces are of such a larger magnitude than this call regressions.
<details>
```
sync/no-hook/host-to-wasm - typed - nop
time: [28.683 ns 28.757 ns 28.844 ns]
change: [+16.472% +17.183% +17.904%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
1 (1.00%) low mild
4 (4.00%) high mild
5 (5.00%) high severe
sync/no-hook/host-to-wasm - untyped - nop
time: [42.515 ns 42.652 ns 42.841 ns]
change: [+12.371% +14.614% +17.462%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
1 (1.00%) high mild
10 (10.00%) high severe
sync/no-hook/host-to-wasm - unchecked - nop
time: [33.936 ns 34.052 ns 34.179 ns]
change: [+25.478% +26.938% +28.369%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
7 (7.00%) high mild
2 (2.00%) high severe
sync/no-hook/host-to-wasm - typed - nop-params-and-results
time: [34.290 ns 34.388 ns 34.502 ns]
change: [+40.802% +42.706% +44.526%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
5 (5.00%) high mild
8 (8.00%) high severe
sync/no-hook/host-to-wasm - untyped - nop-params-and-results
time: [62.546 ns 62.721 ns 62.919 ns]
change: [+2.5014% +3.6319% +4.8078%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
2 (2.00%) high mild
10 (10.00%) high severe
sync/no-hook/host-to-wasm - unchecked - nop-params-and-results
time: [42.609 ns 42.710 ns 42.831 ns]
change: [+20.966% +22.282% +23.475%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
4 (4.00%) high mild
7 (7.00%) high severe
sync/hook-sync/host-to-wasm - typed - nop
time: [29.546 ns 29.675 ns 29.818 ns]
change: [+20.693% +21.794% +22.836%] (p = 0.00 < 0.05)
Performance has regressed.
Found 5 outliers among 100 measurements (5.00%)
3 (3.00%) high mild
2 (2.00%) high severe
sync/hook-sync/host-to-wasm - untyped - nop
time: [45.448 ns 45.699 ns 45.961 ns]
change: [+17.204% +18.514% +19.590%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
4 (4.00%) high mild
10 (10.00%) high severe
sync/hook-sync/host-to-wasm - unchecked - nop
time: [34.334 ns 34.437 ns 34.558 ns]
change: [+23.225% +24.477% +25.886%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
5 (5.00%) high mild
7 (7.00%) high severe
sync/hook-sync/host-to-wasm - typed - nop-params-and-results
time: [36.594 ns 36.763 ns 36.974 ns]
change: [+41.967% +47.261% +52.086%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
3 (3.00%) high mild
9 (9.00%) high severe
sync/hook-sync/host-to-wasm - untyped - nop-params-and-results
time: [63.541 ns 63.831 ns 64.194 ns]
change: [-4.4337% -0.6855% +2.7134%] (p = 0.73 > 0.05)
No change in performance detected.
Found 8 outliers among 100 measurements (8.00%)
6 (6.00%) high mild
2 (2.00%) high severe
sync/hook-sync/host-to-wasm - unchecked - nop-params-and-results
time: [43.968 ns 44.169 ns 44.437 ns]
change: [+18.772% +21.802% +24.623%] (p = 0.00 < 0.05)
Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
3 (3.00%) high mild
12 (12.00%) high severe
async/no-hook/host-to-wasm - typed - nop
time: [4.9612 us 4.9743 us 4.9889 us]
change: [+9.9493% +11.911% +13.502%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
6 (6.00%) high mild
4 (4.00%) high severe
async/no-hook/host-to-wasm - untyped - nop
time: [5.0030 us 5.0211 us 5.0439 us]
change: [+10.841% +11.873% +12.977%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
3 (3.00%) high mild
7 (7.00%) high severe
async/no-hook/host-to-wasm - typed - nop-params-and-results
time: [4.9273 us 4.9468 us 4.9700 us]
change: [+4.7381% +6.8445% +8.8238%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
5 (5.00%) high mild
9 (9.00%) high severe
async/no-hook/host-to-wasm - untyped - nop-params-and-results
time: [5.1151 us 5.1338 us 5.1555 us]
change: [+9.5335% +11.290% +13.044%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
3 (3.00%) high mild
13 (13.00%) high severe
async/hook-sync/host-to-wasm - typed - nop
time: [4.9330 us 4.9394 us 4.9467 us]
change: [+10.046% +11.038% +12.035%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
5 (5.00%) high mild
7 (7.00%) high severe
async/hook-sync/host-to-wasm - untyped - nop
time: [5.0073 us 5.0183 us 5.0310 us]
change: [+9.3828% +10.565% +11.752%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
3 (3.00%) high mild
5 (5.00%) high severe
async/hook-sync/host-to-wasm - typed - nop-params-and-results
time: [4.9610 us 4.9839 us 5.0097 us]
change: [+9.0857% +11.513% +14.359%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
7 (7.00%) high mild
6 (6.00%) high severe
async/hook-sync/host-to-wasm - untyped - nop-params-and-results
time: [5.0995 us 5.1272 us 5.1617 us]
change: [+9.3600% +11.506% +13.809%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
6 (6.00%) high mild
4 (4.00%) high severe
async-pool/no-hook/host-to-wasm - typed - nop
time: [2.4242 us 2.4316 us 2.4396 us]
change: [+7.8756% +8.8803% +9.8346%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
5 (5.00%) high mild
3 (3.00%) high severe
async-pool/no-hook/host-to-wasm - untyped - nop
time: [2.5102 us 2.5155 us 2.5210 us]
change: [+12.130% +13.194% +14.270%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
4 (4.00%) high mild
8 (8.00%) high severe
async-pool/no-hook/host-to-wasm - typed - nop-params-and-results
time: [2.4203 us 2.4310 us 2.4440 us]
change: [+4.0380% +6.3623% +8.7534%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
5 (5.00%) high mild
9 (9.00%) high severe
async-pool/no-hook/host-to-wasm - untyped - nop-params-and-results
time: [2.5501 us 2.5593 us 2.5700 us]
change: [+8.8802% +10.976% +12.937%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
5 (5.00%) high mild
11 (11.00%) high severe
async-pool/hook-sync/host-to-wasm - typed - nop
time: [2.4135 us 2.4190 us 2.4254 us]
change: [+8.3640% +9.3774% +10.435%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
6 (6.00%) high mild
5 (5.00%) high severe
async-pool/hook-sync/host-to-wasm - untyped - nop
time: [2.5172 us 2.5248 us 2.5357 us]
change: [+11.543% +12.750% +13.982%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
1 (1.00%) high mild
7 (7.00%) high severe
async-pool/hook-sync/host-to-wasm - typed - nop-params-and-results
time: [2.4214 us 2.4353 us 2.4532 us]
change: [+1.5158% +5.0872% +8.6765%] (p = 0.00 < 0.05)
Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
2 (2.00%) high mild
13 (13.00%) high severe
async-pool/hook-sync/host-to-wasm - untyped - nop-params-and-results
time: [2.5499 us 2.5607 us 2.5748 us]
change: [+10.146% +12.459% +14.919%] (p = 0.00 < 0.05)
Performance has regressed.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
sync/no-hook/wasm-to-host - nop - typed
time: [6.6135 ns 6.6288 ns 6.6452 ns]
change: [+37.927% +38.837% +39.869%] (p = 0.00 < 0.05)
Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
2 (2.00%) high mild
5 (5.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - typed
time: [15.930 ns 15.993 ns 16.067 ns]
change: [+3.9583% +5.6286% +7.2430%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
11 (11.00%) high mild
1 (1.00%) high severe
sync/no-hook/wasm-to-host - nop - untyped
time: [20.596 ns 20.640 ns 20.690 ns]
change: [+4.3293% +5.2047% +6.0935%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
5 (5.00%) high mild
5 (5.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - untyped
time: [42.659 ns 42.882 ns 43.159 ns]
change: [-2.1466% -0.5079% +1.2554%] (p = 0.58 > 0.05)
No change in performance detected.
Found 15 outliers among 100 measurements (15.00%)
1 (1.00%) high mild
14 (14.00%) high severe
sync/no-hook/wasm-to-host - nop - unchecked
time: [10.671 ns 10.691 ns 10.713 ns]
change: [+83.911% +87.620% +92.062%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
2 (2.00%) high mild
7 (7.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - unchecked
time: [11.136 ns 11.190 ns 11.263 ns]
change: [-29.719% -28.446% -27.029%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
4 (4.00%) high mild
10 (10.00%) high severe
sync/hook-sync/wasm-to-host - nop - typed
time: [6.7964 ns 6.8087 ns 6.8226 ns]
change: [+21.531% +24.206% +27.331%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
4 (4.00%) high mild
10 (10.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - typed
time: [15.865 ns 15.921 ns 15.985 ns]
change: [+4.8466% +6.3330% +7.8317%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
3 (3.00%) high mild
13 (13.00%) high severe
sync/hook-sync/wasm-to-host - nop - untyped
time: [21.505 ns 21.587 ns 21.677 ns]
change: [+8.0908% +9.1943% +10.254%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - untyped
time: [44.018 ns 44.128 ns 44.261 ns]
change: [-1.4671% -0.0458% +1.2443%] (p = 0.94 > 0.05)
No change in performance detected.
Found 14 outliers among 100 measurements (14.00%)
5 (5.00%) high mild
9 (9.00%) high severe
sync/hook-sync/wasm-to-host - nop - unchecked
time: [11.264 ns 11.326 ns 11.387 ns]
change: [+80.225% +81.659% +83.068%] (p = 0.00 < 0.05)
Performance has regressed.
Found 6 outliers among 100 measurements (6.00%)
3 (3.00%) high mild
3 (3.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - unchecked
time: [11.816 ns 11.865 ns 11.920 ns]
change: [-29.152% -28.040% -26.957%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
8 (8.00%) high mild
6 (6.00%) high severe
async/no-hook/wasm-to-host - nop - typed
time: [6.6221 ns 6.6385 ns 6.6569 ns]
change: [+43.618% +44.755% +45.965%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
6 (6.00%) high mild
7 (7.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - typed
time: [15.884 ns 15.929 ns 15.983 ns]
change: [+3.5987% +5.2053% +6.7846%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
3 (3.00%) high mild
13 (13.00%) high severe
async/no-hook/wasm-to-host - nop - untyped
time: [20.615 ns 20.702 ns 20.821 ns]
change: [+6.9799% +8.1212% +9.2819%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
2 (2.00%) high mild
8 (8.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - untyped
time: [41.956 ns 42.207 ns 42.521 ns]
change: [-4.3057% -2.7730% -1.2428%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
3 (3.00%) high mild
11 (11.00%) high severe
async/no-hook/wasm-to-host - nop - unchecked
time: [10.440 ns 10.474 ns 10.513 ns]
change: [+83.959% +85.826% +87.541%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
5 (5.00%) high mild
6 (6.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - unchecked
time: [11.476 ns 11.512 ns 11.554 ns]
change: [-29.857% -28.383% -26.978%] (p = 0.00 < 0.05)
Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
1 (1.00%) low mild
6 (6.00%) high mild
5 (5.00%) high severe
async/no-hook/wasm-to-host - nop - async-typed
time: [26.427 ns 26.478 ns 26.532 ns]
change: [+6.5730% +7.4676% +8.3983%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
2 (2.00%) high mild
7 (7.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - async-typed
time: [28.557 ns 28.693 ns 28.880 ns]
change: [+1.9099% +3.7332% +5.9731%] (p = 0.00 < 0.05)
Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
1 (1.00%) high mild
14 (14.00%) high severe
async/hook-sync/wasm-to-host - nop - typed
time: [6.7488 ns 6.7630 ns 6.7784 ns]
change: [+19.935% +22.080% +23.683%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
4 (4.00%) high mild
5 (5.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - typed
time: [15.928 ns 16.031 ns 16.149 ns]
change: [+5.5188% +6.9567% +8.3839%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
9 (9.00%) high mild
2 (2.00%) high severe
async/hook-sync/wasm-to-host - nop - untyped
time: [21.930 ns 22.114 ns 22.296 ns]
change: [+4.6674% +7.7588% +10.375%] (p = 0.00 < 0.05)
Performance has regressed.
Found 4 outliers among 100 measurements (4.00%)
3 (3.00%) high mild
1 (1.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - untyped
time: [42.684 ns 42.858 ns 43.081 ns]
change: [-5.2957% -3.4693% -1.6217%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
2 (2.00%) high mild
12 (12.00%) high severe
async/hook-sync/wasm-to-host - nop - unchecked
time: [11.026 ns 11.053 ns 11.086 ns]
change: [+70.751% +72.378% +73.961%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
5 (5.00%) high mild
5 (5.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - unchecked
time: [11.840 ns 11.900 ns 11.982 ns]
change: [-27.977% -26.584% -24.887%] (p = 0.00 < 0.05)
Performance has improved.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
async/hook-sync/wasm-to-host - nop - async-typed
time: [27.601 ns 27.709 ns 27.882 ns]
change: [+8.1781% +9.1102% +10.030%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
2 (2.00%) low mild
3 (3.00%) high mild
6 (6.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - async-typed
time: [28.955 ns 29.174 ns 29.413 ns]
change: [+1.1226% +3.0366% +5.1126%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
7 (7.00%) high mild
6 (6.00%) high severe
async-pool/no-hook/wasm-to-host - nop - typed
time: [6.5626 ns 6.5733 ns 6.5851 ns]
change: [+40.561% +42.307% +44.514%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
5 (5.00%) high mild
4 (4.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - typed
time: [15.820 ns 15.886 ns 15.969 ns]
change: [+4.1044% +5.7928% +7.7122%] (p = 0.00 < 0.05)
Performance has regressed.
Found 17 outliers among 100 measurements (17.00%)
4 (4.00%) high mild
13 (13.00%) high severe
async-pool/no-hook/wasm-to-host - nop - untyped
time: [20.481 ns 20.521 ns 20.566 ns]
change: [+6.7962% +7.6950% +8.7612%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
6 (6.00%) high mild
5 (5.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - untyped
time: [41.834 ns 41.998 ns 42.189 ns]
change: [-3.8185% -2.2687% -0.7541%] (p = 0.01 < 0.05)
Change within noise threshold.
Found 13 outliers among 100 measurements (13.00%)
3 (3.00%) high mild
10 (10.00%) high severe
async-pool/no-hook/wasm-to-host - nop - unchecked
time: [10.353 ns 10.380 ns 10.414 ns]
change: [+82.042% +84.591% +87.205%] (p = 0.00 < 0.05)
Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
4 (4.00%) high mild
3 (3.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - unchecked
time: [11.123 ns 11.168 ns 11.228 ns]
change: [-30.813% -29.285% -27.874%] (p = 0.00 < 0.05)
Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
11 (11.00%) high mild
1 (1.00%) high severe
async-pool/no-hook/wasm-to-host - nop - async-typed
time: [27.442 ns 27.528 ns 27.638 ns]
change: [+7.5215% +9.9795% +12.266%] (p = 0.00 < 0.05)
Performance has regressed.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - async-typed
time: [29.014 ns 29.148 ns 29.312 ns]
change: [+2.0227% +3.4722% +4.9047%] (p = 0.00 < 0.05)
Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
6 (6.00%) high mild
1 (1.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - typed
time: [6.7916 ns 6.8116 ns 6.8325 ns]
change: [+20.937% +22.050% +23.281%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
5 (5.00%) high mild
6 (6.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - typed
time: [15.917 ns 15.975 ns 16.051 ns]
change: [+4.6404% +6.4217% +8.3075%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
5 (5.00%) high mild
11 (11.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - untyped
time: [21.558 ns 21.612 ns 21.679 ns]
change: [+8.1158% +9.1409% +10.217%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
2 (2.00%) high mild
7 (7.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - untyped
time: [42.475 ns 42.614 ns 42.775 ns]
change: [-6.3613% -4.4709% -2.7647%] (p = 0.00 < 0.05)
Performance has improved.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - unchecked
time: [11.150 ns 11.195 ns 11.247 ns]
change: [+74.424% +77.056% +79.811%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
3 (3.00%) high mild
11 (11.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - unchecked
time: [11.639 ns 11.695 ns 11.760 ns]
change: [-30.212% -29.023% -27.954%] (p = 0.00 < 0.05)
Performance has improved.
Found 15 outliers among 100 measurements (15.00%)
7 (7.00%) high mild
8 (8.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - async-typed
time: [27.480 ns 27.712 ns 27.984 ns]
change: [+2.9764% +6.5061% +9.8914%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
6 (6.00%) high mild
2 (2.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - async-typed
time: [29.218 ns 29.380 ns 29.600 ns]
change: [+5.2283% +7.7247% +10.822%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
2 (2.00%) high mild
14 (14.00%) high severe
```
</details>
* Add s390x support for frame pointer-based stack walking
* wasmtime: Allow `Caller::get_export` to get all exports
* fuzzing: Add a fuzz target to check that our stack traces are correct
We generate Wasm modules that keep track of their own stack as they call and
return between functions, and then we periodically check that if the host
captures a backtrace, it matches what the Wasm module has recorded.
* Remove VM offsets for `VMHostFuncContext` since it isn't used by JIT code
* Add doc comment with stack walking implementation notes
* Document the extra state that can be passed to `wasmtime_runtime::Backtrace` methods
* Add extensive comments for stack walking function
* Factor architecture-specific bits of stack walking out into modules
* Initialize store-related fields in a vmctx to null when there is no store yet
Rather than leaving them as uninitialized data.
* Use `set_callee` instead of manually setting the vmctx field
* Use a more informative compile error message for unsupported architectures
* Document unsafety of `prepare_host_to_wasm_trampoline`
* Use `bti c` instead of `hint #34` in inline aarch64 assembly
* Remove outdated TODO comment
* Remove setting of `last_wasm_exit_fp` in `set_jit_trap`
This is no longer needed as the value is plumbed through to the backtrace code
directly now.
* Only set the stack limit once, in the face of re-entrancy into Wasm
* Add comments for s390x-specific stack walking bits
* Use the helper macro for all libcalls
If we forget to use it, and then trigger a GC from the libcall, that means we
could miss stack frames when walking the stack, fail to find live GC refs, and
then get use after free bugs. Much less risky to always use the helper macro
that takes care of all of that for us.
* Use the `asm_sym!` macro in Wasm-to-libcall trampolines
This macro handles the macOS-specific underscore prefix stuff for us.
* wasmtime: add size and align to `externref` assertion error message
* Extend the `stacks` fuzzer to have host frames in between Wasm frames
This way we get one or more contiguous sequences of Wasm frames on the stack,
instead of exactly one.
* Add documentation for aarch64-specific backtrace helpers
* Clarify that we only support little-endian aarch64 in trampoline comment
* Use `.machine z13` in s390x assembly file
Since apparently our CI machines have pretty old assemblers that don't have
`.machine z14`. This should be fine though since these trampolines don't make
use of anything that is introduced in z14.
* Fix aarch64 build
* Fix macOS build
* Document the `asm_sym!` macro
* Add windows support to the `wasmtime-asm-macros` crate
* Add windows support to host<--->Wasm trampolines
* Fix trap handler build on windows
* Run `rustfmt` on s390x trampoline source file
* Temporarily disable some assertions about a trap's backtrace in the component model tests
Follow up to re-enable this and fix the associated issue:
https://github.com/bytecodealliance/wasmtime/issues/4535
* Refactor libcall definitions with less macros
This refactors the `libcall!` macro to use the
`foreach_builtin_function!` macro to define all of the trampolines.
Additionally the macro surrounding each libcall itself is no longer
necessary and helps avoid too many macros.
* Use `VMOpaqueContext::from_vm_host_func_context` in `VMHostFuncContext::new`
* Move `backtrace` module to be submodule of `traphandlers`
This avoids making some things `pub(crate)` in `traphandlers` that really
shouldn't be.
* Fix macOS aarch64 build
* Use "i64" instead of "word" in aarch64-specific file
* Save/restore entry SP and exit FP/return pointer in the face of panicking imported host functions
Also clean up assertions surrounding our saved entry/exit registers.
* Put "typed" vs "untyped" in the same position of call benchmark names
Regardless if we are doing wasm-to-host or host-to-wasm
* Fix stacks test case generator build for new `wasm-encoder`
* Fix build for s390x
* Expand libcalls in s390x asm
* Disable more parts of component tests now that backtrace assertions are a bit tighter
* Remove assertion that can maybe fail on s390x
Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
|
||
|
|
174b60dcf7 |
Add *.wast support for invoking components (#4526)
This commit builds on bytecodealliance/wasm-tools#690 to add support to testing of the component model to execute functions when running `*.wast` files. This support is all built on #4442 as functions are invoked through a "dynamic" API. Right now the testing and integration is fairly crude but I'm hoping that we can try to improve it over time as necessary. For now this should provide a hopefully more convenient syntax for unit tests and the like. |
||
|
|
285bc5ce24 |
Implement variant translation in fused adapters (#4534)
* Implement variant translation in fused adapters This commit implements the most general case of variants for fused adapter trampolines. Additionally a number of other primitive types are filled out here to assist with testing variants. The implementation internally was relatively straightforward given the shape of variants, but there's room for future optimization as necessary especially around converting locals to various types. This commit also introduces a "one off" fuzzer for adapters to ensure that the generated adapter is valid. I hope to extend this fuzz generator as more types are implemented to assist in various corner cases that might arise. For now the fuzzer simply tests that the output wasm module is valid, not that it actually executes correctly. I hope to integrate with a fuzzer along the lines of #4307 one day to test the run-time-correctness of the generated adapters as well, at which point this fuzzer would become obsolete. Finally this commit also fixes an issue with `u8` translation where upper bits weren't zero'd out and were passed raw across modules. Instead smaller-than-32 types now all mask out their upper bits and do sign-extension as appropriate for unsigned/signed variants. * Fuzz memory64 in the new trampoline fuzzer Currently memory64 isn't supported elsewhere in the component model implementation of Wasmtime but the trampoline compiler seems as good a place as any to ensure that it at least works in isolation. This plumbs through fuzz input into a `memory64` boolean which gets fed into compilation. Some miscellaneous bugs were fixed as a result to ensure that memory64 trampolines all validate correctly. * Tweak manifest for doc build |
||
|
|
1321c234e5 |
Remove dependency on more-asserts (#4408)
* Remove dependency on `more-asserts` In my recent adventures to do a bit of gardening on our dependencies I noticed that there's a new major version for the `more-asserts` crate. Instead of updating to this though I've opted to instead remove the dependency since I don't think we heavily lean on this crate and otherwise one-off prints are probably sufficient to avoid the need for pulling in a whole crate for this. * Remove exemption for `more-asserts` |
||
|
|
97894bc65e |
Add initial support for fused adapter trampolines (#4501)
* Add initial support for fused adapter trampolines This commit lands a significant new piece of functionality to Wasmtime's implementation of the component model in the form of the implementation of fused adapter trampolines. Internally within a component core wasm modules can communicate with each other by having their exports `canon lift`'d to get `canon lower`'d into a different component. This signifies that two components are communicating through a statically known interface via the canonical ABI at this time. Previously Wasmtime was able to identify that this communication was happening but it simply panicked with `unimplemented!` upon seeing it. This commit is the beginning of filling out this panic location with an actual implementation. The implementation route chosen here for fused adapters is to use a WebAssembly module itself for the implementation. This means that, at compile time of a component, Wasmtime is generating core WebAssembly modules which then get recursively compiled within Wasmtime as well. The choice to use WebAssembly itself as the implementation of fused adapters stems from a few motivations: * This does not represent a significant increase in the "trusted compiler base" of Wasmtime. Getting the Wasm -> CLIF translation correct once is hard enough much less for an entirely different IR to CLIF. By generating WebAssembly no new interactions with Cranelift are added which drastically reduces the possibilities for mistakes. * Using WebAssembly means that component adapters are insulated from miscompilations and mistakes. If something goes wrong it's defined well within the WebAssembly specification how it goes wrong and what happens as a result. This means that the "blast zone" for a wrong adapter is the component instance but not the entire host itself. Accesses to linear memory are guaranteed to be in-bounds and otherwise handled via well-defined traps. * A fully-finished fused adapter compiler is expected to be a significant and quite complex component of Wasmtime. Functionality along these lines is expected to be needed for Web-based polyfills of the component model and by using core WebAssembly it provides the opportunity to share code between Wasmtime and these polyfills for the component model. * Finally the runtime implementation of managing WebAssembly modules is already implemented and quite easy to integrate with, so representing fused adapters with WebAssembly results in very little extra support necessary for the runtime implementation of instantiating and managing a component. The compiler added in this commit is dubbed Wasmtime's Fused Adapter Compiler of Trampolines (FACT) because who doesn't like deriving a name from an acronym. Currently the trampoline compiler is limited in its support for interface types and only supports a few primitives. I plan on filing future PRs to flesh out the support here for all the variants of `InterfaceType`. For now this PR is primarily focused on all of the other infrastructure for the addition of a trampoline compiler. With the choice to use core WebAssembly to implement fused adapters it means that adapters need to be inserted into a module. Unfortunately adapters cannot all go into a single WebAssembly module because adapters themselves have dependencies which may be provided transitively through instances that were instantiated with other adapters. This means that a significant chunk of this PR (`adapt.rs`) is dedicated to determining precisely which adapters go into precisely which adapter modules. This partitioning process attempts to make large modules wherever it can to cut down on core wasm instantiations but is likely not optimal as it's just a simple heuristic today. With all of this added together it's now possible to start writing `*.wast` tests that internally have adapted modules communicating with one another. A `fused.wast` test suite was added as part of this PR which is the beginning of tests for the support of the fused adapter compiler added in this PR. Currently this is primarily testing some various topologies of adapters along with direct/indirect modes. This will grow many more tests over time as more types are supported. Overall I'm not 100% satisfied with the testing story of this PR. When a test fails it's very difficult to debug since everything is written in the text format of WebAssembly meaning there's no "conveniences" to print out the state of the world when things go wrong and easily debug. I think this will become even more apparent as more tests are written for more types in subsequent PRs. At this time though I know of no better alternative other than leaning pretty heavily on fuzz-testing to ensure this is all exercised. * Fix an unused field warning * Fix tests in `wasmtime-runtime` * Add some more tests for compiled trampolines * Remap exports when injecting adapters The exports of a component were accidentally left unmapped which meant that they indexed the instance indexes pre-adapter module insertion. * Fix typo * Rebase conflicts |
||
|
|
4aaf7ff8d9 |
Bump wat/wast crates (#4524)
* Bump wat/wast crates Pull in upstream updates, nothing major, just keeping up-to-date. * Record audit log for new crates |
||
|
|
7c67e620c4 |
support dynamic function calls in component model (#4442)
* support dynamic function calls in component model This addresses #4310, introducing a new `component::values::Val` type for representing component values dynamically, as well as `component::types::Type` for representing the corresponding interface types. It also adds a `call` method to `component::func::Func`, which takes a slice of `Val`s as parameters and returns a `Result<Val>` representing the result. Note that I've moved `post_return` and `call_raw` from `TypedFunc` to `Func` since there was nothing specific to `TypedFunc` about them, and I wanted to reuse them. The code in both is unchanged beyond the trivial tweaks to make them fit in their new home. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * order variants and match cases more consistently Signed-off-by: Joel Dice <joel.dice@fermyon.com> * implement lift for String, Box<str>, etc. This also removes the redundant `store` parameter from `Type::load`. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * implement code review feedback This fixes a few issues: - Bad offset calculation when lowering - Missing variant padding - Style issues regarding `types::Handle` - Missed opportunities to reuse `Lift` and `Lower` impls It also adds forwarding `Lift` impls for `Box<[T]>`, `Vec<T>`, etc. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * move `new_*` methods to specific `types` structs Per review feedback, I've moved `Type::new_record` to `Record::new_val` and added a `Type::unwrap_record` method; likewise for the other kinds of types. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * make tuple, option, and expected type comparisons recursive These types should compare as equal across component boundaries as long as their type parameters are equal. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * improve error diagnostic in `Type::check` We now distinguish between more failure cases to provide an informative error message. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * address review feedback - Remove `WasmStr::to_str_from_memory` and `WasmList::get_from_memory` - add `try_new` methods to various `values` types - avoid using `ExactSizeIterator::len` where we can't trust it - fix over-constrained bounds on forwarded `ComponentType` impls Signed-off-by: Joel Dice <joel.dice@fermyon.com> * rearrange code per review feedback - Move functions from `types` to `values` module so we can make certain struct fields private - Rename `try_new` to just `new` Signed-off-by: Joel Dice <joel.dice@fermyon.com> * remove special-case equality test for tuples, options, and expecteds Instead, I've added a FIXME comment and will open an issue to do recursive structural equality testing. Signed-off-by: Joel Dice <joel.dice@fermyon.com> |
||
|
|
2ba3025e67 |
Add cmake compatibility to c-api (#4369)
* Add cmake compatibility to c-api * Add CMake documentation to wasmtime.h * Add CMake instructions in examples * Modify CI for CMake support * Use correct rust in CI * Trigger build * Refactor run-examples * Reintroduce example_to_run in run-examples * Replace run-examples crate with cmake * Fix markdown formatting in examples readme * Fix cmake test quotes * Build rust wasm before cmake tests * Pass CTEST_OUTPUT_ON_FAILURE * Another cmake test * Handle os differences in cmake test * Fix bugs in memory and multimemory examples |
||
|
|
9c72a0566e |
Upgrade to regalloc2 0.3.1. (#4483)
This includes some changes from @bnjbvr to the trace-logging/annotation to reduce overhead when logging is enabled but only non-RA2 subsystems are at `Trace` level. |
||
|
|
a0a2fd1627 |
fuzzgen: Add scalar float support (#4467)
* fuzzgen: Add float support Add support for generating floats and some float instructions. * fuzzgen: Enable NaN Canonicalization Both IEEE754 and the Wasm spec are somewhat loose about what is allowed to be returned from NaN producing operations. And in practice this changes from X86 to Aarch64 and others. Even in the same host machine, the interpreter may produce a code sequence different from cranelift that generates different NaN's but produces legal results according to the spec. These differences cause spurious failures in the fuzzer. To fix this we enable the NaN Canonicalization pass that replaces any NaN's produced with a single fixed canonical NaN value. * fuzzgen: Use `MultiAry` when inserting opcodes This deduplicates a few inserters! |
||
|
|
f0337c9c76 |
Upgrade to the high-level ittapi v0.3.0 crate (#4003)
* Upgrade to the high-level ittapi v0.3.0 crate * Add exclusion for windows mingw |
||
|
|
439f566f3f |
Split global_asm! helper macros out from wasmtime-fibers (#4454)
This moves them into a new `wasmtime-asm-macros` crate that can be used not just from the `wasmtime-fibers` crate but also from other crates (e.g. we will need them in https://github.com/bytecodealliance/wasmtime/pull/4431). |
||
|
|
f7767eb352 |
clif-util: always use pretty-env-logger (#4443)
Rather than sometimes using `file-per-thread-logger`. Also remove the debug CLI flags, so that we can always just define `RUST_LOG=...` to get logging and don't need to also do other things. |
||
|
|
56831e0a76 |
Update wasmi used for differential fuzzing (#4436)
This fixes a bug recently found on oss-fuzz which was fixed in paritytech/wasmi#295 and paritytech/wasmi#293. |
||
|
|
b9e63fe77a |
Update miette dependency to 5.1 (#4412)
Just some dependency gardening, no other external motivation. |
||
|
|
601e8f3094 |
Remove dependency on the region crate (#4407)
This commit removes Wasmtime's dependency on the `region` crate. The motivation for this came about when I was updating dependencies and saw that `region` had a new major version at 3.0.0 as opposed to our currently used 2.3 track. In reviewing the use cases of `region` within Wasmtime I found two trends in particular which motivated this commit: * Some unix-specific areas of `wasmtime_runtime` use `rustix::mm::mprotect` instead of `region::protect` already. This means that the usage of `region::protect` for changing virtual memory protections was already inconsistent. * Many uses of `region::protect` were already in unix-specific regions which could make use of `rustix`. Overall I opted to remove the dependency on the `region` crate to avoid chasing its versions over time. Unix-specific changes of protections were easily changed to `rustix::mm::mprotect`. There were two locations where a windows/unix split is now required and I subjectively ruled "that seems ok". Finally removing `region` also meant that the "what is the current page size" query needed to be inlined into `wasmtime_runtime`, which I have also subjectively ruled "that seems fine". Finally one final refactoring here was that the `unix.rs` and `linux.rs` split for the pooling allocator was merged. These two files already only differed in one function so I slapped a `cfg_if!` in there to help reduce the duplication. |
||
|
|
9ae060a12a |
Update some dependency versions used by Wasmtime (#4405)
No major motivation here, mostly just dependency gardening. |
||
|
|
41ba851a95 |
Bump versions of wasm-tools crates (#4380)
* Bump versions of wasm-tools crates Note that this leaves new features in the component model, outer type aliases for core wasm types, unimplemented for now. * Move to crates.io-based versions of tools |
||
|
|
7943d34483 |
Update v8 used when fuzzing (#4384)
No particular reason for doing so,just seems good to loosely stay up-to-date with this dependency. |
||
|
|
558a9273e9 |
wasi-nn: update openvino crate, use external CI action (#4383)
* ci: replace OpenVINO installer action To test wasi-nn, we currently use an OpenVINO backend. The Wasmtime CI must install OpenVINO using a custom GitHub action. This CI action has not been updated in some time and in the meantime OpenVINO (and the OpenVINO crates) have released several new versions. https://github.com/abrown/install-openvino-action is an external action that we plan to keep up to date with the latest releases. This change replaces the current CI action with that one. * wasi-nn: upgrade openvino dependency to v0.4.1 This eliminates a `lazy_static` dependency and changes a few parameters to pass by reference. Importantly, it enables support for the latest versions of OpenVINO (v2022.*) in wasi-nn. * ci: update wasi-nn script to source correct env script * ci: really use the correct path for the env script Also, clarify which directory OpenVINO is installed in (the symlink may not be present). |
||
|
|
371ae80ac3 |
Migrate most of wasmtime from lazy_static to once_cell (#4368)
* Update tracing-core to a version which doesn't depend on lazy-static. * Update crossbeam-utils to a version that doesn't depend on lazy-static. * Update crossbeam-epoch to a version that doesn't depend on lazy-static. * Update clap to a version that doesn't depend on lazy-static. * Convert Wasmtime's own use of lazy_static to once_cell. * Make `GDB_REGISTRATION`'s comment a doc comment. * Fix compilation on Windows. |
||
|
|
5542c4ef26 |
support enums with more than 256 variants in derive macro (#4370)
* support enums with more than 256 variants in derive macro This addresses #4361. Technically, we now support up to 2^32 variants, which is the maximum for the canonical ABI. In practice, though, the derived code for enums with even just 2^16 variants takes a prohibitively long time to compile. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * simplify `LowerExpander::expand_variant` code Signed-off-by: Joel Dice <joel.dice@fermyon.com> |
||
|
|
7c428bbd62 |
Bump Wasmtime to 0.40.0 (#4378)
Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com> |
||
|
|
a2197ebbeb |
Do one add_seals call, rather than one per flag. (#4366)
When setting up a copy on write image, we add several seals, to prevent the image from being resized or modified. Set all the seals in a single call, rather than doing one call per seal. |
||
|
|
64759f04a4 |
Migrate cranelift-jit from winapi to windows-sys (#4363)
* Migrate cranelift-jit from `winapi` to `windows-sys` Following up on #4346, this migrates one more place in the tree from winapi to windows-sys. |
||
|
|
22fb3ecbbf |
add ComponentType/Lift/Lower derive macro for record types (#4337)
This is the first stage of implementing https://github.com/bytecodealliance/wasmtime/issues/4308, i.e. derive macros for `ComponentType`, `Lift`, and `Lower` for composite types in the component model. This stage only covers records; I expect the other composite types will follow a similar pattern. It borrows heavily from the work Jamey Sharp did in https://github.com/bytecodealliance/wasmtime/pull/4217. Thanks for that, and thanks to both Jamey and Alex Crichton for their excellent review feedback. Thanks also to Brian for pairing up on the initial draft. Signed-off-by: Joel Dice <joel.dice@fermyon.com> |
||
|
|
df1502531d |
Migrate from winapi to windows-sys (#4346)
* Migrate from `winapi` to `windows-sys` I believe that Microsoft itself is supporting the development of `windows-sys` and it's also used by `cap-std` now so this switches Wasmtime's dependencies on Windows APIs from the `winapi` crate to the `windows-sys` crate. We still have `winapi` in our dependency graph but that may get phased out over time. * Make windows-sys a target-specific dependency |
||
|
|
b2e28b917a |
Cranelift: update to latest regalloc2: (#4324)
- Handle call instructions' clobbers with the clobbers API, using RA2's clobbers bitmask (bytecodealliance/regalloc2#58) rather than clobbers list; - Pull in changes from bytecodealliance/regalloc2#59 for much more sane edge-case behavior w.r.t. liverange splitting. |
||
|
|
0d829a57ee |
Upgrade to regalloc2 v0.2.3 to get bugfix from bytecodealliance/regalloc2#60. (#4335)
* Upgrade to regalloc2 v0.2.3 to get bugfix from bytecodealliance/regalloc2#60. * Update RELEASES.md. * Update two compile tests based on slightly shifting regalloc output. |
||
|
|
4543a07bb5 |
Use global_asm! instead of external assembly files (#4306)
* Use `global_asm!` instead of external assembly files This commit moves the external assembly files of the `wasmtime-fiber` crate into `global_asm!` blocks defined in Rust. The motivation for doing this is not very strong at this time, but the points in favor of this are: * One less tool needed to cross-compile Wasmtime. A linker is still needed but perhaps one day that will improve as well. * A "modern" assembler, built-in to LLVM, is used instead of whatever appears on the system. The first point hasn't really cropped up that much and typically getting an assembler is just as hard as getting a linker nowadays. The second point though has us using `hint #xx` in aarch64 assembly instead of the actual instructions for assembler compatibility, and I believe that's no longer necessary because the LLVM assembler supports the modern instruction names. The translation of the x86/x86_64 assembly has been done to Intel syntax as well as opposed to the old AT&T syntax since that's Rust's default. Additionally s390x still remains in an external assembler file because `global_asm!` is still unstable in Rust on that platform. * Simplify alignment specification * Temporarily disable fail-fast * Add `.cfi_def_cfa_offset 0` to fix CI * Turn off fail-fast * Review comments |
||
|
|
fa36e86f2c |
Update WASI to cap-std 0.25 and windows-sys. (#4302)
This updates to rustix 0.35.6, and updates wasi-common to use cap-std 0.25 and windows-sys (instead of winapi). Changes include: - Better error code mappings on Windows. - Fixes undefined references to `utimensat` on Darwin. - Fixes undefined references to `preadv64` and `pwritev64` on Android. - Updates to io-lifetimes 0.7, which matches the io_safety API in Rust. - y2038 bug fixes for 32-bit platforms |
||
|
|
337c1ca832 |
Use similar to diff expected and actual output in filetests (#4282)
|
||
|
|
22e13fee1d |
fuzz: allow generating shared memories (#4266)
`wasm-smith` v0.11 has support for generating shared memories when the `threads_enabled` configuration flag is set. This change turns on that flag occasionally. This also upgrades `wasm-smith` to v0.11.1 to always generate shared memory with a known maximum. |
||
|
|
7d7ddceb17 |
Update wasm-tools crates (#4246)
This commit updates the wasm-tools family of crates, notably pulling in the refactorings and updates from bytecodealliance/wasm-tools#621 for the latest iteration of the component model. This commit additionally updates all support for the component model for these changes, notably: * Many bits and pieces of type information was refactored. Many `FooTypeIndex` namings are now `TypeFooIndex`. Additionally there is now `TypeIndex` as well as `ComponentTypeIndex` for the two type index spaces in a component. * A number of new sections are now processed to handle the core and component variants. * Internal maps were split such as the `funcs` map into `component_funcs` and `funcs` (same for `instances`). * Canonical options are now processed individually instead of one bulk `into` definition. Overall this was not a major update to the internals of handling the component model in Wasmtime. Instead this was mostly a surface-level refactoring to make sure that everything lines up with the new binary format for components. * All text syntax used in tests was updated to the new syntax. |
||
|
|
55946704cb |
Bump Wasmtime to 0.39.0 (#4225)
Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com> |
||
|
|
ae2c84205f |
Upgrade to regalloc2 v0.2.2. (#4222)
Pulls in an improvement to spillslot allocation (bytecodealliance/regalloc2#56). |
||
|
|
8f61eb9341 |
Upgrade to regalloc2 version 0.2.1. (#4199)
This resolves an edge-case where mul.i128 with an input that continues to be live after the instruction could cause an invalid regalloc constraint (basically, the regalloc did not previously support an instruction use and def both being constrained to the same physical reg; and the "mul" variant used for mul.i128 on x64 was the only instance of such operands in Cranelift). Causes two extra move instructions in the mul.i128 filetest, but that's the price to pay for the slightly more general (works in all cases) handling of the constraints. |