This is a verification pass that can be run after register allocation.
It verifies that value locations are consistent with constraints on
their uses, and that the register diversions are consistent.
Make it clear that register diversions are local to an EBB only. This
affects what branch relaxation is allowed to do.
The verify_locations() takes an optional Liveness parameter which is
used to check that no diverted values are live across CFG edges.
When "binemit" tests encode instructions, keep track of the current set
of register diversions, and use the diverted locations to check operand
constraints.
This matches how constraints are applied during a real binemit phase.
The register constraint solver schedules a set of move instructions to
execute before the instruction getting colored. In extreme cases, this
is not possible because there are no available registers to break cycles
in the register assignments that must be scheduled.
When that happens, we spill one register to an emergency slot so it
becomes available for implementing the assignment cycle. Then the
original register is restored.
The coloring pass can't yet understand the spill and fill move types.
This will be implemented next.
This makes it possible to materialize new RegClass references without
requiring a RegInfo reference to be passed around.
- Move the RegInfo::toprc() method to RegClassData.
- Rename RegClassData::intersect() to intersect_index() and provide a
new intersect() which returns a register class.
- Remove some &RegInfo parameters that are no longer needed.
Fixes#165.
The constraint solver's schedule_move() function sometimes need to use
an extra available register when the moves to be scheduled contains
cycles.
The pending moves have associated register classes that come from the
constraint programming. Since the moves have hard-coded to and from
registers, these register classes are only meant to indicate the
register sizes. In particular, we can use the whole top-level register
class when scavenging for a spare register to break a cycle.
When we detect interference between the values that have already been
merged into the candidate virtual register and an EBB argument, we first
try to resolve the conflict by splitting. We also check if the existing
interfering value is fundamentally incompatible with the branch
instruction so it needs to be removed from the virtual register,
restarting the merge operation.
However, this existing interfering value is not necessarily the only
interference, so the split is not guaranteed to resolve the conflict. If
it turns out that splitting didn't resolve the conflict, restart the
merge after removing this second conflicting value.
It can happen that the currently live registers are blocking a smaller
register class completely, so the only way of solving the allocation
problem is to turn some of the live-through registers into solver
variables.
When the quick_solve attempt fails, try to free up registers in the
critical register class by turning live-through values into solver
variables.
When the return value from a call has been spilled, the reload pass
needs to insert a spill instruction right after the call instruction
which returns its results in registers.
A cursor now also remembers a current source location which will be
assigned to all new instructions created with the cursor.
The old layout::Cursor can't support source locations because it doesn't
have a reference to the full ir::Function.
Add a settings::FlagsOrIsa struct which represents a flags reference and
optionally the ISA it belongs to. Use this for passing flags/isa
information to the verifier.
The verify_function() and verify_context() functions are now generic so
they accept either a &Flags or a &TargetISa argument.
Fix the return_at_end verifier tests which no longer require an ISA
specified. The signle "set return_at_end" flag setting now makes it to
the verifier even when no ISA is present to carry it.
* Make passes assert their dependencies consistently.
This avoids ambiguity about whose responsibility it is to run
to compute cfg, domtree, and loop_analysis data.
* Reset the `valid` flag in DominatorTree's `clear()`.
* Remove the redundant assert from DominatorTree::with_function.
* Remove the message strings from obvious asserts.
This avoids having them spill out into multiple lines.
* Refactor calls to `compute` on `Context` objects into helper functions.
This also moves the calls to it out of Context and into the passes that
actually need it, so that Context's functions don't have any logic of
their own.
Fixes#147.
The Solver::reassign_in() method would previously not record fixed
register assignments for values that are already in the correct
register. The register would simply be marked as unavailable for the
solver.
This did have the effect of tripping up the sanity checks in
Solver::add_var() when that method was called with such a "reassigned"
value. The function can be called for a value that already has a fixed
assignment, but the sanity checks want to make sure the variable
constraints are compatible with the existing fixed assignment. When no
such assignment could be found, the method panicked.
To fix this, make sure that even identity reassignments are recorded
in the assignments vector. Instead, filter the identity assignments out
before scheduling a move sequence for the assignments.
Also add some debug tracing to the regalloc solver.
The new PrimaryMap replaces the primary EntityMap and the PrimaryEntityData
marker trait which was causing some confusion. We now have a clear
division between the two types of maps:
- PrimaryMap is used to assign entity numbers to the primary data for an
entity.
- EntityMap is a secondary mapping adding additional info.
The split also means that the secondary EntityMap can now behave as if
all keys have a default value. This means that we can get rid of the
annoying ensure() and get_or_default() methods ther were used everywhere
instead of indexing. Just use normal indexing now; non-existent keys
will return the default value.
Use an EncCursor instead of a layout cursor to keep track of the
current position in the function. Since the EncCursor holds a reference
to the whole IR function insteadof just the layout, we can rework how IR
borrowing works.
The Context data structure that's live during the spilling pass now owns
an EncCursor which in turn holds references to the function and ISA.
This means that we no longer need to pass around references to parts of
the ir::Function. We can no longer borrow any part of the IR function
across a context method call, but that turns out to be not necessary.
Add a new cursor module and define an EncCursor data type in it. An
EncCursor is a cursor that inserts instructions with a valid encoding
for the ISA. This is useful for passes generating code after
legalization.
Implement a builder interface via the new InstInserterBase trait such
that the EncCursor builders support with_result().
Use EncCursor in coalescing.rs instead of the layout cursor as a proof
of concept.
The Cursor navigation methods all just depend on the cursor's position
and layout reference. Make a CursorBase trait that provides access to
this information with methods and implement the navigation methods on
top of that.
This makes it possible to have multiple types implement the cursor
interface.
When making an outgoing call, some arguments may have to be passed on
the stack. Allocate OutgoingArg stack slots for these arguments and
write them immediately before the outgoing call instruction.
Do the same for incoming function arguments on the stack, but use
IncomingArg stack slots instead. This was previously done in the
spiller, but we move it to the legalizer so it is done at the same time
as outgoing stack arguments.
These stack slot assignments are done in the legalizer before live
range analysis because the outgoing arguments usually are in different
SSSA values with their own short live ranges.
Replace the isa::Legalize enumeration with a function pointer. This
allows an ISA to define its own specific legalization actions instead of
relying on the default two.
Generate a LEGALIZE_ACTIONS table for each ISA which contains
legalization function pointers indexed by the legalization codes that
are already in the encoding tables. Include this table in
isa/*/enc_tables.rs.
Give the `Encodings` iterator a reference to the action table and change
its `legalize()` method to return a function pointer instead of an
ISA-specific code.
The Result<> returned from TargetIsa::encode() no longer implements
Debug, so eliminate uses of unwrap and expect on that type.
The following constraints may need to be resolved during spilling
because the resolution increases register pressure:
- A tied operand whose value is live through the instruction.
- A fixed register constraint for a value used more than once.
- A register use of a spilled value needs to account for the reload
register.
It is possible to pass a register value as an argument to an EBB that
expects a "None" affinity. In that case, the destination EBB value
should not be colored.
We'll need to pick a spill candidate from a set and allow for the search
to fail to find anything.
This also allows slightly better panic messages when we run out of
registers.