Commit Graph

60 Commits

Author SHA1 Message Date
Ulrich Weigand
638dc4e0b3 s390x: Implement full SIMD support (#4427)
This adds full support for all Cranelift SIMD instructions
to the s390x target.  Everything is matched fully via ISLE.

In addition to adding support for many new instructions,
and the lower.isle code to match all SIMD IR patterns,
this patch also adds ABI support for vector types.
In particular, we now need to handle the fact that
vector registers 8 .. 15 are partially callee-saved,
i.e. the high parts of those registers (which correspond
to the old floating-poing registers) are callee-saved,
but the low parts are not.  This is the exact same situation
that we already have on AArch64, and so this patch uses the
same solution (the is_included_in_clobbers callback).

The bulk of the changes are platform-specific, but there are
a few exceptions:

- Added ISLE extractors for the Immediate and Constant types,
  to enable matching the vconst and swizzle instructions.

- Added a missing accessor for call_conv to ABISig.

- Fixed endian conversion for vector types in data_value.rs
  to enable their use in runtests on the big-endian platforms.

- Enabled (nearly) all SIMD runtests on s390x.  [ Two test cases
  remain disabled due to vector shift count semantics, see below. ]

- Enabled all Wasmtime SIMD tests on s390x.

There are three minor issues, called out via FIXMEs below,
which should be addressed in the future, but should not be
blockers to getting this patch merged.  I've opened the
following issues to track them:

- Vector shift count semantics
  https://github.com/bytecodealliance/wasmtime/issues/4424

- is_included_in_clobbers vs. link register
  https://github.com/bytecodealliance/wasmtime/issues/4425

- gen_constant callback
  https://github.com/bytecodealliance/wasmtime/issues/4426

All tests, including all newly enabled SIMD tests, pass
on both z14 and z15 architectures.
2022-07-18 14:00:48 -07:00
Chris Fallin
0824abbae4 Add a basic alias analysis with redundant-load elim and store-to-load fowarding opts. (#4163)
This PR adds a basic *alias analysis*, and optimizations that use it.
This is a "mid-end optimization": it operates on CLIF, the
machine-independent IR, before lowering occurs.

The alias analysis (or maybe more properly, a sort of memory-value
analysis) determines when it can prove a particular memory
location is equal to a given SSA value, and when it can, it replaces any
loads of that location.

This subsumes two common optimizations:

* Redundant load elimination: when the same memory address is loaded two
  times, and it can be proven that no intervening operations will write
  to that memory, then the second load is *redundant* and its result
  must be the same as the first. We can use the first load's result and
  remove the second load.

* Store-to-load forwarding: when a load can be proven to access exactly
  the memory written by a preceding store, we can replace the load's
  result with the store's data operand, and remove the load.

Both of these optimizations rely on a "last store" analysis that is a
sort of coloring mechanism, split across disjoint categories of abstract
state. The basic idea is that every memory-accessing operation is put
into one of N disjoint categories; it is disallowed for memory to ever
be accessed by an op in one category and later accessed by an op in
another category. (The frontend must ensure this.)

Then, given this, we scan the code and determine, for each
memory-accessing op, when a single prior instruction is a store to the
same category. This "colors" the instruction: it is, in a sense, a
static name for that version of memory.

This analysis provides an important invariant: if two operations access
memory with the same last-store, then *no other store can alias* in the
time between that last store and these operations. This must-not-alias
property, together with a check that the accessed address is *exactly
the same* (same SSA value and offset), and other attributes of the
access (type, extension mode) are the same, let us prove that the
results are the same.

Given last-store info, we scan the instructions and build a table from
"memory location" key (last store, address, offset, type, extension) to
known SSA value stored in that location. A store inserts a new mapping.
A load may also insert a new mapping, if we didn't already have one.
Then when a load occurs and an entry already exists for its "location",
we can reuse the value. This will be either RLE or St-to-Ld depending on
where the value came from.

Note that this *does* work across basic blocks: the last-store analysis
is a full iterative dataflow pass, and we are careful to check dominance
of a previously-defined value before aliasing to it at a potentially
redundant load. So we will do the right thing if we only have a
"partially redundant" load (loaded already but only in one predecessor
block), but we will also correctly reuse a value if there is a store or
load above a loop and a redundant load of that value within the loop, as
long as no potentially-aliasing stores happen within the loop.
2022-05-20 13:19:32 -07:00
Chris Fallin
e4b7c8a737 Cranelift: fix #3953: rework single/multiple-use logic in lowering. (#4061)
* Cranelift: fix #3953: rework single/multiple-use logic in lowering.

This PR addresses the longstanding issue with loads trying to merge
into compares on x86-64, and more generally, with the lowering
framework falsely recognizing "single uses" of one op by
another (which would normally allow merging of side-effecting ops like
loads) when there is *indirect* duplication.

To fix this, we replace the direct `value_uses` count with a
transitive notion of uniqueness (not unlike Rust's `&`/`&mut` and how
a `&mut` downgrades to `&` when accessed through another `&`!). A
value is used multiple times transitively if it has multiple direct
uses, or is used by another op that is used multiple times
transitively.

The canonical example of badness is:

```
    v1 := load
    v2 := ifcmp v1, ...
    v3 := selectif v2, ...
    v4 := selectif v2, ...
```

both `v3` and `v4` effectively merge the `ifcmp` (`v2`), so even
though the use of `v1` is "unique", it is codegenned twice. This is
why we ~~can't have nice things~~ can't merge loads into
compares (#3953).

There is quite a subtle and interesting design space around this
problem and how we might solve it. See the long doc-comment on
`ValueUseState` in this PR for more justification for the particular
design here. In particular, this design deliberately simplifies a bit
relative to an "optimal" solution: some uses can *become* unique
depending on merging, but we don't design our data structures for such
updates because that would require significant extra costly
tracking (some sort of transitive refcounting). For example, in the
above, if `selectif` somehow did not merge `ifcmp`, then we would only
codegen the `ifcmp` once into its result register (and use that
register twice); then the load *is* uniquely used, and could be
merged. But that requires transitioning from "multiple use" back to
"unique use" with careful tracking as we do pattern-matching, which
I've chosen to make out-of-scope here for now. In practice, I don't
think it will matter too much (and we can always improve later).

With this PR, we can now re-enable load-op merging for compares. A
subsequent commit does this.

* Update x64 backend to allow load-op merging for `cmp`.

* Update filetests.

* Add test for cmp-mem merging on x64.

* Comment fixes.

* Rework ValueUseState analysis for better performance.

* Update s390x filetest: iadd_ifcout cannot merge loads anymore because it has multiple outputs (ValueUseState limitation)

* Address review comments.
2022-04-22 18:00:48 -07:00
Chris Fallin
5774e068b7 Cranelift: fix regalloc2 integration bug wrt blockparam branch args. (#4042)
Previously, the block successor accumulation and the blockparam branch
arg setup were decoupled. The lowering backend implicitly specified
the order of successor edges via its `MachTerminator` enum on the last
instruction in the block, while the `Lower` toplevel
machine-independent driver set up blockparam branch args in the edge
order seen in CLIF.

In some cases, these orders did not match -- for example, when the
conditional branch depended on an FP condition that was implemented by
swapping taken/not-taken edges and inverting the condition code.

This PR refactors the successor handling to be centralized in `Lower`
rather than flow through the terminator `MachInst`, and adds a
successor block and its blockparam args at the same time, ensuring the
orders match.
2022-04-18 09:53:57 -07:00
Chris Fallin
a0318f36f0 Switch Cranelift over to regalloc2. (#3989)
This PR switches Cranelift over to the new register allocator, regalloc2.

See [this document](https://gist.github.com/cfallin/08553421a91f150254fe878f67301801)
for a summary of the design changes. This switchover has implications for
core VCode/MachInst types and the lowering pass.

Overall, this change brings improvements to both compile time and speed of
generated code (runtime), as reported in #3942:

```
Benchmark       Compilation (wallclock)     Execution (wallclock)
blake3-scalar   25% faster                  28% faster
blake3-simd     no diff                     no diff
meshoptimizer   19% faster                  17% faster
pulldown-cmark  17% faster                  no diff
bz2             15% faster                  no diff
SpiderMonkey,   21% faster                  2% faster
  fib(30)
clang.wasm      42% faster                  N/A
```
2022-04-14 10:28:21 -07:00
Andrew Brown
bd6fe11ca9 cranelift: remove load_complex and store_complex (#3976)
This change removes all variants of `load*_complex` and `store*_complex`
from Cranelift; this is a breaking change to the instructions exposed by
CLIF. The complete list of instructions removed is: `load_complex`,
`store_complex`, `uload8_complex`, `sload8_complex`, `istore8_complex`,
`sload8_complex`, `uload16_complex`, `sload16_complex`,
`istore16_complex`, `uload32_complex`, `sload32_complex`,
`istore32_complex`, `uload8x8_complex`, `sload8x8_complex`,
`sload16x4_complex`, `uload16x4_complex`, `uload32x2_complex`,
`sload32x2_complex`.

The rationale for this removal is that the Cranelift backend now has the
ability to pattern-match multiple upstream additions in order to
calculate the address to access. Previously, this was not possible so
the `*_complex` instructions were needed. Over time, these instructions
have fallen out of use in this repository, making the additional
overhead of maintaining them a chore.
2022-03-31 10:05:10 -07:00
Chris Fallin
ca0e8d0a1d Remove incomplete/unmaintained ARM32 backend (for now). (#3799)
In #3721, we have been discussing what to do about the ARM32 backend in
Cranelift. Currently, this backend supports only 32-bit types, which is
insufficient for full Wasm-MVP; it's missing other critical bits, like
floating-point support; and it has only ever been exercised, AFAIK, via
the filetests for the individual CLIF instructions that are implemented.

We were very very thankful for the original contribution of this
backend, even in its partial state, and we had hoped at the time that we
could eventually mature it in-tree until it supported e.g. Wasm and
other use-cases. But that hasn't yet happened -- to the blame of no-one,
to be clear, we just haven't had a contributor with sufficient time.

Unfortunately, the existence of the backend and lack of active
maintainer now potentially pose a bit of a burden as we hope to make
continuing changes to the backend framework. For example, the ISLE
migration, and the use of regalloc2 that it will allow, would need all
of the existing lowering patterns in the hand-written ARM32 backend to
be rewritten as ISLE rules.

Given that we don't currently have the resources to do this, we think
it's probably best if we, sadly, for now remove this partial backend.
This is not in any way a statement of what we might accept in the
future, though. If, in the future, an ARM32 backend updated to our
latest codebase with an active maintainer were to appear, we'd be happy
to merge it (and likewise for any other architecture!). But for now,
this is probably the best path. Thanks again to the original contributor
@jmkrauz and we hope that this work can eventually be brought back and
reused if someone has the time to do so!
2022-02-14 15:03:52 -08:00
Ulrich Weigand
10198553c7 ISLE: Common accessors for some insn data fields (#3781)
Add accessors to prelude.isle to access data fields of
`func_addr` and `symbol_value` instructions.

These are based on similar versions I had added to the s390x
back-end, but are a bit more straightforward to use.

- func_ref_data: Extract SigRef, ExternalName, and RelocDistance
  fields given a FuncRef.

- symbol_value_data: Extract ExternalName, RelocDistance, and
  offset fields given a GlobalValue representing a Symbol.

- reloc_distance_near: Test for RelocDistance::Near.

The s390x back-end is changed to use these common versions.

Note that this exposed a bug in common isle code: This extractor:

(extractor (load_sym inst)
  (and inst
       (load _ (def_inst (symbol_value
                           (symbol_value_data _
                             (reloc_distance_near) offset)))
               (i64_from_offset
                 (memarg_symbol_offset_sum <offset _)))))

would raise an assertion in sema.rs due to a supposed cycle in
extractor definitions.  But there was no actual cycle, it was
simply that the extractor tree refers twice to the `insn_data`
extractor (once via the `load` and once via the `symbol_value`
extractor).  Fixed by checking for pre-existing definitions only
along one path in the tree, not across the whole tree.
2022-02-08 17:57:27 -08:00
Chris Fallin
7bc17fda39 Fix iadd_ifcout lowering in ISLE to return a register corresponding to the iflags.
This register is not initialized, but we protect against its being used
by never allowing an iflags/fflags-typed value to be used with
`put_value_in_regs`. All `iflags`/`fflags` usages should be handled by
pattern-matching: e.g., `trapif` explicitly matches an `iadd_ifcout`
input.

Eventually (#3249) we need to simplify this by removing
iflags/fflags-tyepd values and using bool flags instead,
pattern-matching to get the same efficient lowerings as today. For now,
this allows the ISLE assertions to pass.
2021-12-08 11:59:38 -08:00
Alex Crichton
7d0f6ab90f aarch64: Migrate iadd and isub to ISLE
This commit is the first "meaty" instruction added to ISLE for the
AArch64 backend. I chose to pick the first two in the current lowering's
`match` statement, `isub` and `iadd`. These two turned out to be
particularly interesting for a few reasons:

* Both had clearly migratable-to-ISLE behavior along the lines of
  special-casing per type. For example 128-bit and vector arithmetic
  were both easily translateable.

* The `iadd` instruction has special cases for fusing with a
  multiplication to generate `madd` which is expressed pretty easily in
  ISLE.

* Otherwise both instructions had a number of forms where they attempted
  to interpret the RHS as various forms of constants, extends, or
  shifts. There's a bit of a design space of how best to represent this
  in ISLE and what I settled on was to have a special case for each form
  of instruction, and the special cases are somewhat duplicated between
  `iadd` and `isub`. There's custom "extractors" for the special cases
  and instructions that support these special cases will have an
  `rule`-per-case.

Overall I think the ISLE transitioned pretty well. I don't think that
the aarch64 backend is going to follow the x64 backend super closely,
though. For example the x64 backend is having a helper-per-instruction
at the moment but with AArch64 it seems to make more sense to only have
a helper-per-enum-variant-of-`MInst`. This is because the same
instruction (e.g. `ALUOp::Sub32`) can be expressed with multiple
different forms depending on the payload.

It's worth noting that the ISLE looks like it's a good deal larger than
the code actually being removed from lowering as part of this commit. I
think this is deceptive though because a lot of the logic in
`put_input_in_rse_imm12_maybe_negated` and `alu_inst_imm12` is being
inlined into the ISLE definitions for each instruction instead of having
it all packed into the helper functions. Some of the "boilerplate" here
is the addition of various ISLE utilities as well.
2021-11-19 06:51:38 -08:00
Nick Fitzgerald
b5105c025c MachInst: always rematerialize constants, rather than assign them registers
There were a few previous code paths that attempted to handle this, but this new
check handles it for all callers.

Rematerializing constants, rather than assigning and reusing a register, allows
for lower register pressure.
2021-11-10 15:45:43 -08:00
Nick Fitzgerald
d377b665c6 Initial ISLE integration with the x64 backend
On the build side, this commit introduces two things:

1. The automatic generation of various ISLE definitions for working with
CLIF. Specifically, it generates extern type definitions for clif opcodes and
the clif instruction data `enum`, as well as extractors for matching each clif
instructions. This happens inside the `cranelift-codegen-meta` crate.

2. The compilation of ISLE DSL sources to Rust code, that can be included in the
main `cranelift-codegen` compilation.

Next, this commit introduces the integration glue code required to get
ISLE-generated Rust code hooked up in clif-to-x64 lowering. When lowering a clif
instruction, we first try to use the ISLE code path. If it succeeds, then we are
done lowering this instruction. If it fails, then we proceed along the existing
hand-written code path for lowering.

Finally, this commit ports many lowering rules over from hand-written,
open-coded Rust to ISLE.

In the process of supporting ISLE, this commit also makes the x64 `Inst` capable
of expressing SSA by supporting 3-operand forms for all of the existing
instructions that only have a 2-operand form encoding:

    dst = src1 op src2

Rather than only the typical x86-64 2-operand form:

    dst = dst op src

This allows `MachInst` to be in SSA form, since `dst` and `src1` are
disentangled.

("3-operand" and "2-operand" are a little bit of a misnomer since not all
operations are binary operations, but we do the same thing for, e.g., unary
operations by disentangling the sole operand from the result.)

There are two motivations for this change:

1. To allow ISLE lowering code to have value-equivalence semantics. We want ISLE
   lowering to translate a CLIF expression that evaluates to some value into a
   `MachInst` expression that evaluates to the same value. We want both the
   lowering itself and the resulting `MachInst` to be pure and referentially
   transparent. This is both a nice paradigm for compiler writers that are
   authoring and maintaining lowering rules and is a prerequisite to any sort of
   formal verification of our lowering rules in the future.

2. Better align `MachInst` with `regalloc2`'s API, which requires that the input
   be in SSA form.
2021-10-12 17:11:58 -07:00
bjorn3
2fbd57e9e2 Remove imm_with_name
It is only used once to rename an imm field to mask
2021-10-31 19:57:04 +01:00
bjorn3
1fd491dadd Remove fallthrough instruction 2021-10-12 14:22:07 +02:00
Nick Fitzgerald
4283d2116d cranelift: Move most debug-level logs to the trace level
Cranelift crates have historically been much more verbose with debug-level
logging than most other crates in the Rust ecosystem. We log things like how
many parameters a basic block has, the color of virtual registers during
regalloc, etc. Even for Cranelift hackers, these things are largely only useful
when hacking specifically on Cranelift and looking at a particular test case,
not even when using some Cranelift embedding (such as Wasmtime).

Most of the time, when people want logging for their Rust programs, they do
something like:

    RUST_LOG=debug cargo run

This means that they get all that mostly not useful debug logging out of
Cranelift. So they might want to disable logging for Cranelift, or change it to
a higher log level:

    RUST_LOG=debug,cranelift=info cargo run

The problem is that this is already more annoying to type that `RUST_LOG=debug`,
and that Cranelift isn't one single crate, so you actually have to play
whack-a-mole with naming all the Cranelift crates off the top of your head,
something more like this:

    RUST_LOG=debug,cranelift=info,cranelift_codegen=info,cranelift_wasm=info,...

Therefore, we're changing most of the `debug!` logs into `trace!` logs: anything
that is very Cranelift-internal, unlikely to be useful/meaningful to the
"average" Cranelift embedder, or prints a message for each instruction visited
during a pass. On the other hand, things that just report a one line statistic
for a whole pass, for example, are left as `debug!`. The more verbose the log
messages are, the higher the bar they must clear to be `debug!` rather than
`trace!`.
2021-07-26 11:50:16 -07:00
Chris Fallin
997fab55d5 Skip value-label analysis if no value labels are present. 2021-01-21 15:59:52 -08:00
Chris Fallin
c84d6be6f4 Detailed debug-info (DWARF) support in new backends (initially x64).
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:

- Translate value-label metadata on the input into "value_label"
  pseudo-instructions when lowering into VCode. These
  pseudo-instructions take a register as input, denote a value label,
  and semantically are like a "move into value label" -- i.e., they
  update the current value (as seen by debugging tools) of the given
  local. These pseudo-instructions emit no machine code.

- Perform a dataflow analysis *at the machine-code level*, tracking
  value-labels that propagate into registers and into [SP+constant]
  stack storage. This is a forward dataflow fixpoint analysis where each
  storage location can contain a *set* of value labels, and each value
  label can reside in a *set* of storage locations. (Meet function is
  pairwise intersection by storage location.)

  This analysis traces value labels symbolically through loads and
  stores and reg-to-reg moves, so it will naturally handle spills and
  reloads without knowing anything special about them.

- When this analysis converges, we have, at each machine-code offset, a
  mapping from value labels to some number of storage locations; for
  each offset for each label, we choose the best location (prefer
  registers). Note that we can choose any location, as the symbolic
  dataflow analysis is sound and guarantees that the value at the
  value_label instruction propagates to all of the named locations.

- Then we can convert this mapping into a format that the DWARF
  generation code (wasmtime's debug crate) can use.

This PR also adds the new-backend variant to the gdb tests on CI.
2021-01-21 15:59:49 -08:00
Chris Fallin
456561f431 x64 and aarch64: allow StructArgument and StructReturn args.
The StructReturn ABI is fairly simple at the codegen/isel level: we only
need to take care to return the sret pointer as one of the return values
if that wasn't specified in the initial function signature.

Struct arguments are a little more complex. A struct argument is stored
as a chunk of memory in the stack-args space. However, the CLIF
semantics are slightly special: on the caller side, the parameter passed
in is a pointer to an arbitrary memory block, and we must memcpy this
data to the on-stack struct-argument; and on the callee side, we provide
a pointer to the passed-in struct-argument as the CLIF block param
value.

This is necessary to support various ABIs other than Wasm, such as that
of Rust (with the cg_clif codegen backend).
2021-01-17 23:11:45 -08:00
Chris Fallin
b4426be072 machinst lowering: update inst color when scanning across branch to allow more load-op merging.
A branch is considered side-effecting and so updates the instruction
color (which is our way of computing how far instructions can sink).
However, in the lowering loop, we did not update current instruction
color when scanning backward across branches, which are side-effecting.
As a result, the color was stale and fewer load-op merges were permitted
than are actually possible.

Note that this would not have resulted in any correctness issues, as the
stale color is too high (so no merges are permitted that should have
been disallowed).

Fixes #2562.
2021-01-11 11:20:44 -08:00
Chris Fallin
6eea015d6c Multi-register value support: framework for Values wider than machine regs.
This will allow for support for `I128` values everywhere, and `I64`
values on 32-bit targets (e.g., ARM32 and x86-32). It does not alter the
machine backends to build such support; it just adds the framework for
the MachInst backends to *reason* about a `Value` residing in more than
one register.
2021-01-05 17:45:02 -08:00
Chris Fallin
3e516e784b Fix lowering instruction-sinking (load-merging) bug.
This fixes a subtle corner case exposed during fuzzing. If we have a bit
of CLIF like:

```
    v0 = load.i64 ...
    v1 = iadd.i64 v0, ...
    v2 = do_other_thing v1
    v3 = load.i64 v1
```

and if this is lowered using a machine backend that can merge loads into
ALU ops, *and* that has an addressing mode that can look through add
ops, then the following can happen:

1. We lower the load at `v3`. This looks backward at the address
   operand tree and finds that `v1` is `v0` plus other things; it has an
   addressing mode that can add `v0`'s register and the other things
   directly; so it calls `put_value_in_reg(v0)` and uses its register in
   the amode. At this point, the add producing `v1` has no references,
   so it will not (yet) be codegen'd.
2. We lower `do_other_thing`, which puts `v1` in a register and uses it.
   the `iadd` now has a reference.
3. We reach the `iadd` and, because it has a reference, lower it. Our
   machine has the ability to merge a load into an ALU operation.
   Crucially, *we think the load at `v0` is mergeable* because it has
   only one user, the add at `v1` (!). So we merge it.
4. We reach the `load` at `v0` and because it has been merged into the
   `iadd`, we do not separately codegen it. The register that holds `v0`
   is thus never written, and the use of this register by the final load
   (Step 1) will see an undefined value.

The logic error here is that in the presence of pattern matching that
looks through pure ops, we can end up with multiple uses of a value that
originally had a single use (because we allow lookthrough of pure ops in
all cases). In other words, the multiple-use-ness of `v1` "passes
through" in some sense to `v0`. However, the load sinking logic is not
aware of this.

The fix, I think, is pretty simple: we disallow an effectful instruction
from sinking/merging if it already has some other use when we look back
at it.

If we disallowed lookthrough of *any* op that had multiple uses, even
pure ones, then we would avoid this scenario; but earlier experiments
showed that to have a non-negligible performance impact, so (given that
we've worked out the logic above) I think this complexity is worth it.
2020-12-03 14:59:12 -08:00
Chris Fallin
712ff22492 AArch64 SIMD: pattern-match load+splat into LD1R instruction. 2020-11-16 15:59:28 -08:00
Chris Fallin
3c8cb7b908 MachInst lowering logic: allow effectful instructions to merge.
This PR updates the "coloring" scheme that accounts for side-effects in
the MachInst lowering logic. As a result, the new backends will now be
able to merge effectful operations (such as memory loads) *into* other
operations; previously, only the other way (pure ops merged into
effectful ops) was possible. This will allow, for example, a load+ALU-op
combination, as is common on x86. It should even allow a load + ALU-op +
store sequence to merge into one lowered instruction.

The scheme arose from many fruitful discussions with @julian-seward1
(thanks!); significant credit is due to him for the insights here.

The first insight is that given the right basic conditions, i.e.  that
the root instruction is the only use of an effectful instruction's
result, all we need is that the "color" of the effectful instruction is
*one less* than the color of the current instruction. It's easier to
think about colors on the program points between instructions: if the
color coming *out* of the first (effectful def) instruction and *in* to
the second (effectful or effect-free use) instruction are the same, then
they can merge. Basically the color denotes a version of global state;
if the same, then no other effectful ops happened in the meantime.

The second insight is that we can keep state as we scan, tracking the
"current color", and *update* this when we sink (merge) an op. Hence
when we sink a load into another op, we effectively *re-color* every
instruction it moved over; this may allow further sinks.

Consider the example (and assume that we consider loads effectful in
order to conservatively ensure a strong memory model; otherwise, replace
with other effectful value-producing insts):

```
  v0 = load x
  v1 = load y
  v2 = add v0, 1
  v3 = add v1, 1
```

Scanning from bottom to top, we first see the add producing `v3` and we
can sink the load producing `v1` into it, producing a load + ALU-op
machine instruction. This is legal because `v1` moves over only `v2`,
which is a pure instruction. Consider, though, `v2`: under a simple
scheme that has no other context, `v0` could not sink to `v2` because it
would move over `v1`, another load. But because we already sunk `v1`
down to `v3`, we are free to sink `v0` to `v2`; the update of the
"current color" during the scan allows this.

This PR also cleans up the `LowerCtx` interface a bit at the same time:
whereas previously it always gave some subset of (constant, mergeable
inst, register) directly from `LowerCtx::get_input()`, it now returns
zero or more of (constant, mergable inst) from
`LowerCtx::maybe_get_input_as_source_or_const()`, and returns the
register only from `LowerCtx::put_input_in_reg()`. This removes the need
to explicitly denote uses of the register, so it's a little safer.

Note that this PR does not actually make use of the new ability to merge
loads into other ops; that will come in future PRs, especially to
optimize the `x64` backend by using direct-memory operands.
2020-11-16 14:53:45 -08:00
Chris Fallin
5df8840483 Add support for brff/brif and icmp_sp to new x64 backend to support Lucet.
`lucetc` currently *almost*, but not quite, works with the new x64
backend; the only missing piece is support for the particular
instructions emitted as part of its prologue stack-check.

We do not normally see `brff`, `brif`, or `ifcmp_sp` in CLIF generated by
`cranelift-wasm` without the old-backend legalization rules, so these
were not supported in the new x64 backend as they were not necessary for
Wasm MVP support. Using them resulted in an `unimplemented!()` panic.

This PR adds support for `brff` and `brif` analogously to how AArch64
implements them, by pattern-matching the `ifcmp` / `ffcmp` directly.
Then `ifcmp_sp` is a straightforward variant of `ifcmp`.

Along the way, this also removes the notion of "fallthrough block" from
the branch-group lowering method; instead, `fallthrough` instructions
are handled as normal branches to their explicitly-provided targets,
which (in the original CLIF) match the fallthrough block. The reason for
this is that the block reordering done as part of lowering can change
the fallthrough block. We were not using `fallthrough` instructions in
the output produced by `cranelift-wasm`, so this, too, was not
previously caught.

With these changes, the `lucetc` crate in Lucet passes all tests with
the `x64` feature-flag added to its `cranelift-codegen` dependency.
2020-11-11 13:43:39 -08:00
Andrew Brown
83f182b390 Implement initial emission of constants
This approach suffers from memory-size bloat during compile time due to the desire to de-duplicate the constants emitted and reduce runtime memory-size. As a first step, though, this provides an end-to-end mechanism for constants to be emitted in the MachBuffer islands.
2020-11-05 14:25:02 -08:00
Ulrich Weigand
80c2d70d2d machinst ABI: Support for accumulating outgoing args
When performing a function call, the platform ABI may require space
on the stack to hold outgoing arguments and/or return values.

Currently, this is supported via decrementing the stack pointer
before the call and incrementing it afterwards, using the
emit_stack_pre_adjust and emit_stack_post_adjust methods of
ABICaller.  However, on some platforms it would be preferable
to just allocate enough space for any call done in the function
in the caller's prologue instead.

This patch adds support to allow back-ends to choose that method.
Instead of calling emit_stack_pre/post_adjust around a call, they
simply call a new accumulate_outgoing_args_size method of
ABICaller instead.  This will pass on the required size to the
ABICallee structure of the calling function, which will accumulate
the maximum size required for all function calls.

That accumulated size is then passed to the gen_clobber_save
and gen_clobber_restore functions so they can include the size
in the stack allocation / deallocation that already happens in
the prologue / epilogue code.
2020-11-03 18:49:34 +01:00
Benjamin Bouvier
c5bbc87498 machinst: allow passing constant information to the instruction emitter;
A new associated type Info is added to MachInstEmit, which is the
immutable counterpart to State. It can't easily be constructed from an
ABICallee, since it would require adding an associated type to the
latter, and making so leaks the associated type in a lot of places in
the code base and makes the code harder to read. Instead, the EmitInfo
state can simply be passed to the `Vcode::emit` function directly.
2020-10-08 09:21:51 +02:00
Andrew Brown
ce44719e1f refactor: change LowerCtx::get_immediate to return a DataValue
This change abstracts away (from the perspective of the new backend) how immediate values are stored in InstructionData. It gathers large immediates from necessary places (e.g. constant pool) and delegates to `InstructionData::imm_value` for the rest. This refactor only touches original users of `LowerCtx::get_immediate` but a future change could do the same for any place the new backend is accessing InstructionData directly to retrieve immediates.
2020-10-07 12:17:17 -07:00
Chris Fallin
835db11bea Support for SpiderMonkey's "Wasm ABI 2020".
As part of a Wasm JIT update, SpiderMonkey is changing its internal
WebAssembly function ABI. The new ABI's frame format includes "caller
TLS" and "callee TLS" slots. The details of where these come from are
not important; from Cranelift's point of view, the only relevant
requirement is that we have two on-stack args that are always present
(offsetting other on-stack args), and that we define special argument
purposes so that we can supply values for these slots.

Note that this adds a *new* ABI (a variant of the Baldrdash ABI) because
we do not want to tightly couple the landing of this PR to the landing
of the changes in SpiderMonkey; it's better if both the old and new
behavior remain available in Cranelift, so SpiderMonkey can continue to
vendor Cranelift even if it does not land (or backs out) the ABI change.

Furthermore, note that this needs to be a Cranelift-level change (i.e.
cannot be done purely from the translator environment implementation)
because the special TLS arguments must always go on the stack, which
would not otherwise happen with the usual argument-placement logic; and
there is no primitive to push a value directly in CLIF code (the notion
of a stack frame is a lower-level concept).
2020-09-30 14:55:56 -07:00
Chris Fallin
e8f772c1ac x64 new backend: port ABI implementation to shared infrastructure with AArch64.
Previously, in #2128, we factored out a common "vanilla 64-bit ABI"
implementation from the AArch64 ABI code, with the idea that this should
be largely compatible with x64. This PR alters the new x64 backend to
make use of the shared infrastructure, removing the duplication that
existed previously. The generated code is nearly (not exactly) the same;
the only difference relates to how the clobber-save region is padded in
the prologue.

This also changes some register allocations in the aarch64 code because
call support in the shared ABI infra now passes a temp vreg in, rather
than requiring use of a fixed, non-allocable temp; tests have been
updated, and the runtime behavior is unchanged.
2020-09-08 17:59:01 -07:00
Benjamin Bouvier
7c85654285 Address review comments. 2020-08-24 17:00:30 +02:00
Benjamin Bouvier
ee76e01efc machinst: fix the pinned reg hack;
The pinned register hack didn't work because the GetPinnedReg is marked
as having side-effects, so that GVN wouldn't try to common it out.

This commit tweaks the function used during lowering to vcode, so that
the GetPinnedReg opcode is specially handled. It's a bit lame, but it
makes the hack work again.

Also, use_input needs to be a no-op for real registers.
2020-08-24 17:00:30 +02:00
Nick Fitzgerald
05bf9ea3f3 Rename "Stackmap" to "StackMap"
And "stackmap" to "stack_map".

This commit is purely mechanical.
2020-08-07 10:08:44 -07:00
Anton Kirilov
1ec6930005 Enable the spec::simd::simd_lane test for AArch64
Copyright (c) 2020, Arm Limited.
2020-08-06 11:14:15 +01:00
Julian Seward
25e31739a6 Implement Wasm Atomics for Cranelift/newBE/aarch64.
The implementation is pretty straightforward.  Wasm atomic instructions fall
into 5 groups

* atomic read-modify-write
* atomic compare-and-swap
* atomic loads
* atomic stores
* fences

and the implementation mirrors that structure, at both the CLIF and AArch64
levels.

At the CLIF level, there are five new instructions, one for each group.  Some
comments about these:

* for those that take addresses (all except fences), the address is contained
  entirely in a single `Value`; there is no offset field as there is with
  normal loads and stores.  Wasm atomics require alignment checks, and
  removing the offset makes implementation of those checks a bit simpler.

* atomic loads and stores get their own instructions, rather than reusing the
  existing load and store instructions, for two reasons:

  - per above comment, makes alignment checking simpler

  - reuse of existing loads and stores would require extension of `MemFlags`
    to indicate atomicity, which sounds semantically unclean.  For example,
    then *any* instruction carrying `MemFlags` could be marked as atomic, even
    in cases where it is meaningless or ambiguous.

* I tried to specify, in comments, the behaviour of these instructions as
  tightly as I could.  Unfortunately there is no way (per my limited CLIF
  knowledge) to enforce the constraint that they may only be used on I8, I16,
  I32 and I64 types, and in particular not on floating point or vector types.

The translation from Wasm to CLIF, in `code_translator.rs` is unremarkable.

At the AArch64 level, there are also five new instructions, one for each
group.  All of them except `::Fence` contain multiple real machine
instructions.  Atomic r-m-w and atomic c-a-s are emitted as the usual
load-linked store-conditional loops, guarded at both ends by memory fences.
Atomic loads and stores are emitted as a load preceded by a fence, and a store
followed by a fence, respectively.  The amount of fencing may be overkill, but
it reflects exactly what the SM Wasm baseline compiler for AArch64 does.

One reason to implement r-m-w and c-a-s as a single insn which is expanded
only at emission time is that we must be very careful what instructions we
allow in between the load-linked and store-conditional.  In particular, we
cannot allow *any* extra memory transactions in there, since -- particularly
on low-end hardware -- that might cause the transaction to fail, hence
deadlocking the generated code.  That implies that we can't present the LL/SC
loop to the register allocator as its constituent instructions, since it might
insert spills anywhere.  Hence we must present it as a single indivisible
unit, as we do here.  It also has the benefit of reducing the total amount of
work the RA has to do.

The only other notable feature of the r-m-w and c-a-s translations into
AArch64 code, is that they both need a scratch register internally.  Rather
than faking one up by claiming, in `get_regs` that it modifies an extra
scratch register, and having to have a dummy initialisation of it, these new
instructions (`::LLSC` and `::CAS`) simply use fixed registers in the range
x24-x28.  We rely on the RA's ability to coalesce V<-->R copies to make the
cost of the resulting extra copies zero or almost zero.  x24-x28 are chosen so
as to be call-clobbered, hence their use is less likely to interfere with long
live ranges that span calls.

One subtlety regarding the use of completely fixed input and output registers
is that we must be careful how the surrounding copy from/to of the arg/result
registers is done.  In particular, it is not safe to simply emit copies in
some arbitrary order if one of the arg registers is a real reg.  For that
reason, the arguments are first moved into virtual regs if they are not
already there, using a new method `<LowerCtx for Lower>::ensure_in_vreg`.
Again, we rely on coalescing to turn them into no-ops in the common case.

There is also a ridealong fix for the AArch64 lowering case for
`Opcode::Trapif | Opcode::Trapff`, which removes a bug in which two trap insns
in a row were generated.

In the patch as submitted there are 6 "FIXME JRS" comments, which mark things
which I believe to be correct, but for which I would appreciate a second
opinion.  Unless otherwise directed, I will remove them for the final commit
but leave the associated code/comments unchanged.
2020-08-04 09:35:50 +02:00
Chris Fallin
1fbdf169b5 Aarch64: fix narrow integer-register extension with Baldrdash ABI.
In the Baldrdash (SpiderMonkey) embedding, we must take care to
zero-extend all function arguments to callees in integer registers when
the types are narrower than 64 bits. This is because, unlike the native
SysV ABI, the Baldrdash ABI expects high bits to be cleared. Not doing
so leads to difficult-to-trace errors where high bits falsely tag an
int32 as e.g. an object pointer, leading to potential security issues.
2020-07-31 10:19:13 -07:00
Benjamin Bouvier
694af3aec2 machinst x64: implement float Floor/Ceil/Trunc/Nearest as VM calls; 2020-07-24 19:29:12 +02:00
Benjamin Bouvier
ead8a835c4 machinst x64: add more FP support 2020-07-17 15:56:44 +02:00
Chris Fallin
26529006e0 Address review comments. 2020-07-14 10:17:29 -07:00
Chris Fallin
08353fcc14 Reftypes part two: add support for stackmaps.
This commit adds support for generating stackmaps at safepoints to the
new backend framework and to the AArch64 backend in particular. It has
been tested to work with SpiderMonkey.
2020-07-14 10:17:27 -07:00
Chris Fallin
492000e945 MachInst isel and aarch64 backend: docs / clarity improvements.
From discussion with Julian and Ben, this PR makes a few documentation-
and naming-level changes (no functionality change):

- Document that the `LowerCtx`-provided output register can be used as a
  scratch register during the lowered instruction sequence before
  placing the final result in it.

- Rename `input_to_*` helpers in the AArch64 backend to
  `put_input_in_*`, emphasizing that these are side-effecting helpers
  that potentially generate code (e.g., sign/zero-extensions) to ensure
  an input value is in a register.
2020-06-18 12:18:50 -07:00
Chris Fallin
02ae1b4464 Merge pull request #1846 from julian-seward1/better-phis
Rewrite `lower_edge` to produce better phi-translations:
2020-06-09 09:56:52 -07:00
Julian Seward
6d25759c8e Rewrite lower_edge to produce better phi-translations:
* ensure that all const assignments are placed at the end of the sequence.
  This minimises live ranges.

* for the non-const assignments, ignore self-assignments.  This can
  dramatically reduce the total number of moves generated, because any
  self-assignments trigger the overlap-case handling, hence invoking the
  double-copy behaviour in cases where it's not necessary.

It's worth pointing out that self-assignments are common, and are not due to
deficiencies in CLIR optimisation.  Rather, they occur whenever a loop back
edge doesn't modify *all* loop-carried values.  This can easily happen if
the loop has multiple "early" back-edges -- "continues" in C parlance.  Eg:

   loop_header(a, b, c, d, e, f):
      ...
      a_new = ...
      b_new = ...
      if (..) goto loop_header(a_new, b_new, c, d, e, f)

      ...
      c_new = ...
      d_new = ...
      if (..) goto loop_header(a_new, b_new, c_new, d_new, e, f)

      etc

For functions with many live values, this can dramatically reduce the number
of spill moves we throw into the register allocator.

In terms of compilation costs, this ranges from neutral for functions which
spill not at all, or minimally (joey_small, joey_med) to a 7.1% reduction in
insn count.

In terms of run costs, for one spill-heavy test (bz2 w/ custom timing harness),
instruction counts are reduced by 4.3%, data reads by 12.3% and data writes
by 18.5%.  Note those last two figures include all reads and writes made by the
generated code, not just spills/reloads, so the proportional reduction in
spill/reload traffic must be greater.
2020-06-09 10:36:32 +02:00
Chris Fallin
fc2a6f273b Three fixes to various SpiderMonkey-related issues:
- Properly mask constant values down to appropriate width when
  generating a constant value directly in aarch64 backend. This was a
  miscompilation introduced in the new-isel refactor. In combination
  with failure to respect NarrowValueMode, this resulted in a very
  subtle bug when an `i32` constant was used in bit-twiddling logic.

- Add support for `iadd_ifcout` in aarch64 backend as used in explicit
  heap-check mode. With this change, we no longer fail heap-related
  tests with the huge-heap-region mode disabled.

- Remove a panic that was occurring in some tests that are currently
  ignored on aarch64, by simply returning empty/default information in
  `value_label` functionality rather than touching unimplemented APIs.
  This is not a bugfix per-se, but removes confusing panic messages from
  `cargo test` output that might otherwise mislead.
2020-06-08 13:02:00 -07:00
Chris Fallin
fe97659813 Address review comments. 2020-06-03 13:31:34 -07:00
Chris Fallin
615362068f Multi-value return support. 2020-06-03 13:31:34 -07:00
Anton Kirilov
8a928830ac Enable the wast::Cranelift::spec::simd::simd_store test for AArch64
Copyright (c) 2020, Arm Limited.
2020-05-24 22:53:07 +01:00
Chris Fallin
bdd2873c8c Address review comments. 2020-05-18 16:25:26 -07:00
Chris Fallin
72e6be9342 Rework of MachInst isel, branch fixups and lowering, and block ordering.
This patch includes:

- A complete rework of the way that CLIF blocks and edge blocks are
  lowered into VCode blocks. The new mechanism in `BlockLoweringOrder`
  computes RPO over the CFG, but with a twist: it merges edge blocks intto
  heads or tails of original CLIF blocks wherever possible, and it does
  this without ever actually materializing the full nodes-plus-edges
  graph first. The backend driver lowers blocks in final order so
  there's no need to reshuffle later.

- A new `MachBuffer` that replaces the `MachSection`. This is a special
  version of a code-sink that is far more than a humble `Vec<u8>`. In
  particular, it keeps a record of label definitions and label uses,
  with a machine-pluggable `LabelUse` trait that defines various types
  of fixups (basically internal relocations).

  Importantly, it implements some simple peephole-style branch rewrites
  *inline in the emission pass*, without any separate traversals over
  the code to use fallthroughs, swap taken/not-taken arms, etc. It
  tracks branches at the tail of the buffer and can (i) remove blocks
  that are just unconditional branches (by redirecting the label), (ii)
  understand a conditional/unconditional pair and swap the conditional
  polarity when it's helpful; and (iii) remove branches that branch to
  the fallthrough PC.

  The `MachBuffer` also implements branch-island support. On
  architectures like AArch64, this is needed to allow conditional
  branches within plausibly-attainable ranges (+/- 1MB on AArch64
  specifically). It also does this inline while streaming through the
  emission, without any sort of fixpoint algorithm or later moving of
  code, by simply tracking outstanding references and "deadlines" and
  emitting an island just-in-time when we're in danger of going out of
  range.

- A rework of the instruction selector driver. This is largely following
  the same algorithm as before, but is cleaned up significantly, in
  particular in the API: the machine backend can ask for an input arg
  and get any of three forms (constant, register, producing
  instruction), indicating it needs the register or can merge the
  constant or producing instruction as appropriate. This new driver
  takes special care to emit constants right at use-sites (and at phi
  inputs), minimizing their live-ranges, and also special-cases the
  "pinned register" to avoid superfluous moves.

Overall, on `bz2.wasm`, the results are:

    wasmtime full run (compile + runtime) of bz2:

    baseline:   9774M insns, 9742M cycles, 3.918s
    w/ changes: 7012M insns, 6888M cycles, 2.958s  (24.5% faster, 28.3% fewer insns)

    clif-util wasm compile bz2:

    baseline:   2633M insns, 3278M cycles, 1.034s
    w/ changes: 2366M insns, 2920M cycles, 0.923s  (10.7% faster, 10.1% fewer insns)

    All numbers are averages of two runs on an Ampere eMAG.
2020-05-16 23:08:22 -07:00
Benjamin Bouvier
19d8a7f1fb machinst: Reuse memory accross loop iterations in lowering; 2020-05-07 12:24:02 +02:00