Files
wasmtime/cranelift/codegen/src/machinst/lower.rs
Julian Seward 25e31739a6 Implement Wasm Atomics for Cranelift/newBE/aarch64.
The implementation is pretty straightforward.  Wasm atomic instructions fall
into 5 groups

* atomic read-modify-write
* atomic compare-and-swap
* atomic loads
* atomic stores
* fences

and the implementation mirrors that structure, at both the CLIF and AArch64
levels.

At the CLIF level, there are five new instructions, one for each group.  Some
comments about these:

* for those that take addresses (all except fences), the address is contained
  entirely in a single `Value`; there is no offset field as there is with
  normal loads and stores.  Wasm atomics require alignment checks, and
  removing the offset makes implementation of those checks a bit simpler.

* atomic loads and stores get their own instructions, rather than reusing the
  existing load and store instructions, for two reasons:

  - per above comment, makes alignment checking simpler

  - reuse of existing loads and stores would require extension of `MemFlags`
    to indicate atomicity, which sounds semantically unclean.  For example,
    then *any* instruction carrying `MemFlags` could be marked as atomic, even
    in cases where it is meaningless or ambiguous.

* I tried to specify, in comments, the behaviour of these instructions as
  tightly as I could.  Unfortunately there is no way (per my limited CLIF
  knowledge) to enforce the constraint that they may only be used on I8, I16,
  I32 and I64 types, and in particular not on floating point or vector types.

The translation from Wasm to CLIF, in `code_translator.rs` is unremarkable.

At the AArch64 level, there are also five new instructions, one for each
group.  All of them except `::Fence` contain multiple real machine
instructions.  Atomic r-m-w and atomic c-a-s are emitted as the usual
load-linked store-conditional loops, guarded at both ends by memory fences.
Atomic loads and stores are emitted as a load preceded by a fence, and a store
followed by a fence, respectively.  The amount of fencing may be overkill, but
it reflects exactly what the SM Wasm baseline compiler for AArch64 does.

One reason to implement r-m-w and c-a-s as a single insn which is expanded
only at emission time is that we must be very careful what instructions we
allow in between the load-linked and store-conditional.  In particular, we
cannot allow *any* extra memory transactions in there, since -- particularly
on low-end hardware -- that might cause the transaction to fail, hence
deadlocking the generated code.  That implies that we can't present the LL/SC
loop to the register allocator as its constituent instructions, since it might
insert spills anywhere.  Hence we must present it as a single indivisible
unit, as we do here.  It also has the benefit of reducing the total amount of
work the RA has to do.

The only other notable feature of the r-m-w and c-a-s translations into
AArch64 code, is that they both need a scratch register internally.  Rather
than faking one up by claiming, in `get_regs` that it modifies an extra
scratch register, and having to have a dummy initialisation of it, these new
instructions (`::LLSC` and `::CAS`) simply use fixed registers in the range
x24-x28.  We rely on the RA's ability to coalesce V<-->R copies to make the
cost of the resulting extra copies zero or almost zero.  x24-x28 are chosen so
as to be call-clobbered, hence their use is less likely to interfere with long
live ranges that span calls.

One subtlety regarding the use of completely fixed input and output registers
is that we must be careful how the surrounding copy from/to of the arg/result
registers is done.  In particular, it is not safe to simply emit copies in
some arbitrary order if one of the arg registers is a real reg.  For that
reason, the arguments are first moved into virtual regs if they are not
already there, using a new method `<LowerCtx for Lower>::ensure_in_vreg`.
Again, we rely on coalescing to turn them into no-ops in the common case.

There is also a ridealong fix for the AArch64 lowering case for
`Opcode::Trapif | Opcode::Trapff`, which removes a bug in which two trap insns
in a row were generated.

In the patch as submitted there are 6 "FIXME JRS" comments, which mark things
which I believe to be correct, but for which I would appreciate a second
opinion.  Unless otherwise directed, I will remove them for the final commit
but leave the associated code/comments unchanged.
2020-08-04 09:35:50 +02:00

1046 lines
40 KiB
Rust

//! This module implements lowering (instruction selection) from Cranelift IR
//! to machine instructions with virtual registers. This is *almost* the final
//! machine code, except for register allocation.
use crate::entity::SecondaryMap;
use crate::fx::{FxHashMap, FxHashSet};
use crate::inst_predicates::{has_side_effect_or_load, is_constant_64bit};
use crate::ir::instructions::BranchInfo;
use crate::ir::types::I64;
use crate::ir::{
ArgumentPurpose, Block, Constant, ConstantData, ExternalName, Function, GlobalValueData, Inst,
InstructionData, MemFlags, Opcode, Signature, SourceLoc, Type, Value, ValueDef,
};
use crate::machinst::{
ABIBody, BlockIndex, BlockLoweringOrder, LoweredBlock, MachLabel, VCode, VCodeBuilder,
VCodeInst,
};
use crate::CodegenResult;
use regalloc::{Reg, RegClass, StackmapRequestInfo, VirtualReg, Writable};
use alloc::boxed::Box;
use alloc::vec::Vec;
use log::debug;
use smallvec::SmallVec;
/// An "instruction color" partitions CLIF instructions by side-effecting ops.
/// All instructions with the same "color" are guaranteed not to be separated by
/// any side-effecting op (for this purpose, loads are also considered
/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
/// furthermore, it is guaranteed that for any two instructions A and B such
/// that color(A) == color(B), either A dominates B and B postdominates A, or
/// vice-versa. (For now, in practice, only ops in the same basic block can ever
/// have the same color, trivially providing the second condition.) Intuitively,
/// this means that the ops of the same color must always execute "together", as
/// part of one atomic contiguous section of the dynamic execution trace, and
/// they can be freely permuted (modulo true dataflow dependencies) without
/// affecting program behavior.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct InstColor(u32);
impl InstColor {
fn new(n: u32) -> InstColor {
InstColor(n)
}
/// Get an arbitrary index representing this color. The index is unique
/// *within a single function compilation*, but indices may be reused across
/// functions.
pub fn get(self) -> u32 {
self.0
}
}
/// A context that machine-specific lowering code can use to emit lowered
/// instructions. This is the view of the machine-independent per-function
/// lowering context that is seen by the machine backend.
pub trait LowerCtx {
/// The instruction type for which this lowering framework is instantiated.
type I: VCodeInst;
// Function-level queries:
/// Get the `ABIBody`.
fn abi(&mut self) -> &dyn ABIBody<I = Self::I>;
/// Get the (virtual) register that receives the return value. A return
/// instruction should lower into a sequence that fills this register. (Why
/// not allow the backend to specify its own result register for the return?
/// Because there may be multiple return points.)
fn retval(&self, idx: usize) -> Writable<Reg>;
/// Returns the vreg containing the VmContext parameter, if there's one.
fn get_vm_context(&self) -> Option<Reg>;
// General instruction queries:
/// Get the instdata for a given IR instruction.
fn data(&self, ir_inst: Inst) -> &InstructionData;
/// Get the controlling type for a polymorphic IR instruction.
fn ty(&self, ir_inst: Inst) -> Type;
/// Get the target for a call instruction, as an `ExternalName`. Returns a tuple
/// providing this name and the "relocation distance", i.e., whether the backend
/// can assume the target will be "nearby" (within some small offset) or an
/// arbitrary address. (This comes from the `colocated` bit in the CLIF.)
fn call_target<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance)>;
/// Get the signature for a call or call-indirect instruction.
fn call_sig<'b>(&'b self, ir_inst: Inst) -> Option<&'b Signature>;
/// Get the symbol name, relocation distance estimate, and offset for a
/// symbol_value instruction.
fn symbol_value<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance, i64)>;
/// Returns the memory flags of a given memory access.
fn memflags(&self, ir_inst: Inst) -> Option<MemFlags>;
/// Get the source location for a given instruction.
fn srcloc(&self, ir_inst: Inst) -> SourceLoc;
/// Get the side-effect color of the given instruction (specifically, at the
/// program point just prior to the instruction). The "color" changes at
/// every side-effecting op; the backend should not try to merge across
/// side-effect colors unless the op being merged is known to be pure.
fn inst_color(&self, ir_inst: Inst) -> InstColor;
// Instruction input/output queries:
/// Get the number of inputs to the given IR instruction.
fn num_inputs(&self, ir_inst: Inst) -> usize;
/// Get the number of outputs to the given IR instruction.
fn num_outputs(&self, ir_inst: Inst) -> usize;
/// Get the type for an instruction's input.
fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type;
/// Get the type for an instruction's output.
fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type;
/// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit
/// value, if possible.
fn get_constant(&self, ir_inst: Inst) -> Option<u64>;
/// Get the input in any combination of three forms:
///
/// - An instruction, if the same color as this instruction or if the
/// producing instruction has no side effects (thus in both cases
/// mergeable);
/// - A constant, if the value is a constant;
/// - A register.
///
/// The instruction input may be available in some or all of these
/// forms. More than one is possible: e.g., it may be produced by an
/// instruction in the same block, but may also have been forced into a
/// register already by an earlier op. It will *always* be available
/// in a register, at least.
///
/// If the backend uses the register, rather than one of the other
/// forms (constant or merging of the producing op), it must call
/// `use_input_reg()` to ensure the producing inst is actually lowered
/// as well. Failing to do so may result in the instruction that generates
/// this value never being generated, thus resulting in incorrect execution.
/// For correctness, backends should thus wrap `get_input()` and
/// `use_input_regs()` with helpers that return a register only after
/// ensuring it is marked as used.
fn get_input(&self, ir_inst: Inst, idx: usize) -> LowerInput;
/// Get the `idx`th output register of the given IR instruction. When
/// `backend.lower_inst_to_regs(ctx, inst)` is called, it is expected that
/// the backend will write results to these output register(s). This
/// register will always be "fresh"; it is guaranteed not to overlap with
/// any of the inputs, and can be freely used as a scratch register within
/// the lowered instruction sequence, as long as its final value is the
/// result of the computation.
fn get_output(&self, ir_inst: Inst, idx: usize) -> Writable<Reg>;
// Codegen primitives: allocate temps, emit instructions, set result registers,
// ask for an input to be gen'd into a register.
/// Get a new temp.
fn alloc_tmp(&mut self, rc: RegClass, ty: Type) -> Writable<Reg>;
/// Emit a machine instruction.
fn emit(&mut self, mach_inst: Self::I);
/// Emit a machine instruction that is a safepoint.
fn emit_safepoint(&mut self, mach_inst: Self::I);
/// Indicate that the given input uses the register returned by
/// `get_input()`. Codegen may not happen otherwise for the producing
/// instruction if it has no side effects and no uses.
fn use_input_reg(&mut self, input: LowerInput);
/// Is the given register output needed after the given instruction? Allows
/// instructions with multiple outputs to make fine-grained decisions on
/// which outputs to actually generate.
fn is_reg_needed(&self, ir_inst: Inst, reg: Reg) -> bool;
/// Retrieve constant data given a handle.
fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData;
/// Cause the value in `reg` to be in a virtual reg, by copying it into a new virtual reg
/// if `reg` is a real reg. `ty` describes the type of the value in `reg`.
fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg;
}
/// A representation of all of the ways in which an instruction input is
/// available: as a producing instruction (in the same color-partition), as a
/// constant, and/or in an existing register. See [LowerCtx::get_input] for more
/// details.
#[derive(Clone, Copy, Debug)]
pub struct LowerInput {
/// The value is live in a register. This option is always available. Call
/// [LowerCtx::use_input_reg()] if the register is used.
pub reg: Reg,
/// An instruction produces this value; the instruction's result index that
/// produces this value is given.
pub inst: Option<(Inst, usize)>,
/// The value is a known constant.
pub constant: Option<u64>,
}
/// A machine backend.
pub trait LowerBackend {
/// The machine instruction type.
type MInst: VCodeInst;
/// Lower a single instruction.
///
/// For a branch, this function should not generate the actual branch
/// instruction. However, it must force any values it needs for the branch
/// edge (block-param actuals) into registers, because the actual branch
/// generation (`lower_branch_group()`) happens *after* any possible merged
/// out-edge.
fn lower<C: LowerCtx<I = Self::MInst>>(&self, ctx: &mut C, inst: Inst) -> CodegenResult<()>;
/// Lower a block-terminating group of branches (which together can be seen
/// as one N-way branch), given a vcode MachLabel for each target.
fn lower_branch_group<C: LowerCtx<I = Self::MInst>>(
&self,
ctx: &mut C,
insts: &[Inst],
targets: &[MachLabel],
fallthrough: Option<MachLabel>,
) -> CodegenResult<()>;
/// A bit of a hack: give a fixed register that always holds the result of a
/// `get_pinned_reg` instruction, if known. This allows elision of moves
/// into the associated vreg, instead using the real reg directly.
fn maybe_pinned_reg(&self) -> Option<Reg> {
None
}
}
/// A pending instruction to insert and auxiliary information about it: its source location and
/// whether it is a safepoint.
struct InstTuple<I: VCodeInst> {
loc: SourceLoc,
is_safepoint: bool,
inst: I,
}
/// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence
/// from original Inst to MachInsts.
pub struct Lower<'func, I: VCodeInst> {
/// The function to lower.
f: &'func Function,
/// Lowered machine instructions.
vcode: VCodeBuilder<I>,
/// Mapping from `Value` (SSA value in IR) to virtual register.
value_regs: SecondaryMap<Value, Reg>,
/// Return-value vregs.
retval_regs: Vec<Reg>,
/// Instruction colors.
inst_colors: SecondaryMap<Inst, InstColor>,
/// Instruction constant values, if known.
inst_constants: FxHashMap<Inst, u64>,
/// Instruction has a side-effect and must be codegen'd.
inst_needed: SecondaryMap<Inst, bool>,
/// Value (vreg) is needed and producer must be codegen'd.
vreg_needed: Vec<bool>,
/// Next virtual register number to allocate.
next_vreg: u32,
/// Insts in reverse block order, before final copy to vcode.
block_insts: Vec<InstTuple<I>>,
/// Ranges in `block_insts` constituting BBs.
block_ranges: Vec<(usize, usize)>,
/// Instructions collected for the BB in progress, in reverse order, with
/// source-locs attached.
bb_insts: Vec<InstTuple<I>>,
/// Instructions collected for the CLIF inst in progress, in forward order.
ir_insts: Vec<InstTuple<I>>,
/// The register to use for GetPinnedReg, if any, on this architecture.
pinned_reg: Option<Reg>,
/// The vreg containing the special VmContext parameter, if it is present in the current
/// function's signature.
vm_context: Option<Reg>,
}
/// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a
/// reference.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RelocDistance {
/// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted
/// as approximately "within the compiled output of one module"; e.g., within AArch64's +/-
/// 128MB offset. If unsure, use `Far` instead.
Near,
/// Target of relocation could be anywhere in the address space.
Far,
}
fn alloc_vreg(
value_regs: &mut SecondaryMap<Value, Reg>,
regclass: RegClass,
value: Value,
next_vreg: &mut u32,
) -> VirtualReg {
if value_regs[value].is_invalid() {
// default value in map.
let v = *next_vreg;
*next_vreg += 1;
value_regs[value] = Reg::new_virtual(regclass, v);
debug!("value {} gets vreg {:?}", value, v);
}
value_regs[value].as_virtual_reg().unwrap()
}
enum GenerateReturn {
Yes,
No,
}
impl<'func, I: VCodeInst> Lower<'func, I> {
/// Prepare a new lowering context for the given IR function.
pub fn new(
f: &'func Function,
abi: Box<dyn ABIBody<I = I>>,
block_order: BlockLoweringOrder,
) -> CodegenResult<Lower<'func, I>> {
let mut vcode = VCodeBuilder::new(abi, block_order);
let mut next_vreg: u32 = 0;
let mut value_regs = SecondaryMap::with_default(Reg::invalid());
// Assign a vreg to each block param and each inst result.
for bb in f.layout.blocks() {
for &param in f.dfg.block_params(bb) {
let ty = f.dfg.value_type(param);
let vreg = alloc_vreg(&mut value_regs, I::rc_for_type(ty)?, param, &mut next_vreg);
vcode.set_vreg_type(vreg, ty);
debug!("bb {} param {}: vreg {:?}", bb, param, vreg);
}
for inst in f.layout.block_insts(bb) {
for &result in f.dfg.inst_results(inst) {
let ty = f.dfg.value_type(result);
let vreg =
alloc_vreg(&mut value_regs, I::rc_for_type(ty)?, result, &mut next_vreg);
vcode.set_vreg_type(vreg, ty);
debug!(
"bb {} inst {} ({:?}): result vreg {:?}",
bb, inst, f.dfg[inst], vreg
);
}
}
}
let vm_context = f
.signature
.special_param_index(ArgumentPurpose::VMContext)
.map(|vm_context_index| {
let entry_block = f.layout.entry_block().unwrap();
let param = f.dfg.block_params(entry_block)[vm_context_index];
value_regs[param]
});
// Assign a vreg to each return value.
let mut retval_regs = vec![];
for ret in &f.signature.returns {
let v = next_vreg;
next_vreg += 1;
let regclass = I::rc_for_type(ret.value_type)?;
let vreg = Reg::new_virtual(regclass, v);
retval_regs.push(vreg);
vcode.set_vreg_type(vreg.as_virtual_reg().unwrap(), ret.value_type);
}
// Compute instruction colors, find constant instructions, and find instructions with
// side-effects, in one combined pass.
let mut cur_color = 0;
let mut inst_colors = SecondaryMap::with_default(InstColor::new(0));
let mut inst_constants = FxHashMap::default();
let mut inst_needed = SecondaryMap::with_default(false);
for bb in f.layout.blocks() {
cur_color += 1;
for inst in f.layout.block_insts(bb) {
let side_effect = has_side_effect_or_load(f, inst);
// Assign colors. A new color is chosen *after* any side-effecting instruction.
inst_colors[inst] = InstColor::new(cur_color);
debug!("bb {} inst {} has color {}", bb, inst, cur_color);
if side_effect {
debug!(" -> side-effecting");
inst_needed[inst] = true;
cur_color += 1;
}
// Determine if this is a constant; if so, add to the table.
if let Some(c) = is_constant_64bit(f, inst) {
debug!(" -> constant: {}", c);
inst_constants.insert(inst, c);
}
}
}
let vreg_needed = std::iter::repeat(false).take(next_vreg as usize).collect();
Ok(Lower {
f,
vcode,
value_regs,
retval_regs,
inst_colors,
inst_constants,
inst_needed,
vreg_needed,
next_vreg,
block_insts: vec![],
block_ranges: vec![],
bb_insts: vec![],
ir_insts: vec![],
pinned_reg: None,
vm_context,
})
}
fn gen_arg_setup(&mut self) {
if let Some(entry_bb) = self.f.layout.entry_block() {
debug!(
"gen_arg_setup: entry BB {} args are:\n{:?}",
entry_bb,
self.f.dfg.block_params(entry_bb)
);
for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
let reg = Writable::from_reg(self.value_regs[*param]);
let insn = self.vcode.abi().gen_copy_arg_to_reg(i, reg);
self.emit(insn);
}
if let Some(insn) = self.vcode.abi().gen_retval_area_setup() {
self.emit(insn);
}
}
}
fn gen_retval_setup(&mut self, gen_ret_inst: GenerateReturn) {
let retval_regs = self.retval_regs.clone();
for (i, reg) in retval_regs.into_iter().enumerate() {
let reg = Writable::from_reg(reg);
let insns = self.vcode.abi().gen_copy_reg_to_retval(i, reg);
for insn in insns {
self.emit(insn);
}
}
let inst = match gen_ret_inst {
GenerateReturn::Yes => self.vcode.abi().gen_ret(),
GenerateReturn::No => self.vcode.abi().gen_epilogue_placeholder(),
};
self.emit(inst);
}
fn lower_edge(&mut self, pred: Block, inst: Inst, succ: Block) -> CodegenResult<()> {
debug!("lower_edge: pred {} succ {}", pred, succ);
let num_args = self.f.dfg.block_params(succ).len();
debug_assert!(num_args == self.f.dfg.inst_variable_args(inst).len());
// Most blocks have no params, so skip all the hoop-jumping below and make an early exit.
if num_args == 0 {
return Ok(());
}
// Make up two vectors of info:
//
// * one for dsts which are to be assigned constants. We'll deal with those second, so
// as to minimise live ranges.
//
// * one for dsts whose sources are non-constants.
let mut const_bundles = SmallVec::<[(Type, Writable<Reg>, u64); 16]>::new();
let mut var_bundles = SmallVec::<[(Type, Writable<Reg>, Reg); 16]>::new();
let mut i = 0;
for (dst_val, src_val) in self
.f
.dfg
.block_params(succ)
.iter()
.zip(self.f.dfg.inst_variable_args(inst).iter())
{
let src_val = self.f.dfg.resolve_aliases(*src_val);
let ty = self.f.dfg.value_type(src_val);
debug_assert!(ty == self.f.dfg.value_type(*dst_val));
let dst_reg = self.value_regs[*dst_val];
let input = self.get_input_for_val(inst, src_val);
debug!("jump arg {} is {}, reg {:?}", i, src_val, input.reg);
i += 1;
if let Some(c) = input.constant {
const_bundles.push((ty, Writable::from_reg(dst_reg), c));
} else {
self.use_input_reg(input);
let src_reg = input.reg;
// Skip self-assignments. Not only are they pointless, they falsely trigger the
// overlap-check below and hence can cause a lot of unnecessary copying through
// temporaries.
if dst_reg != src_reg {
var_bundles.push((ty, Writable::from_reg(dst_reg), src_reg));
}
}
}
// Deal first with the moves whose sources are variables.
// FIXME: use regalloc.rs' SparseSetU here. This would avoid all heap allocation
// for cases of up to circa 16 args. Currently not possible because regalloc.rs
// does not export it.
let mut src_reg_set = FxHashSet::<Reg>::default();
for (_, _, src_reg) in &var_bundles {
src_reg_set.insert(*src_reg);
}
let mut overlaps = false;
for (_, dst_reg, _) in &var_bundles {
if src_reg_set.contains(&dst_reg.to_reg()) {
overlaps = true;
break;
}
}
// If, as is mostly the case, the source and destination register sets are non
// overlapping, then we can copy directly, so as to save the register allocator work.
if !overlaps {
for (ty, dst_reg, src_reg) in &var_bundles {
self.emit(I::gen_move(*dst_reg, *src_reg, *ty));
}
} else {
// There's some overlap, so play safe and copy via temps.
let mut tmp_regs = SmallVec::<[Writable<Reg>; 16]>::new();
for (ty, _, _) in &var_bundles {
tmp_regs.push(self.alloc_tmp(I::rc_for_type(*ty)?, *ty));
}
for ((ty, _, src_reg), tmp_reg) in var_bundles.iter().zip(tmp_regs.iter()) {
self.emit(I::gen_move(*tmp_reg, *src_reg, *ty));
}
for ((ty, dst_reg, _), tmp_reg) in var_bundles.iter().zip(tmp_regs.iter()) {
self.emit(I::gen_move(*dst_reg, (*tmp_reg).to_reg(), *ty));
}
}
// Now, finally, deal with the moves whose sources are constants.
for (ty, dst_reg, const_u64) in &const_bundles {
for inst in I::gen_constant(*dst_reg, *const_u64, *ty, |reg_class, ty| {
self.alloc_tmp(reg_class, ty)
})
.into_iter()
{
self.emit(inst);
}
}
Ok(())
}
fn lower_clif_block<B: LowerBackend<MInst = I>>(
&mut self,
backend: &B,
block: Block,
) -> CodegenResult<()> {
// Lowering loop:
// - For each non-branch instruction, in reverse order:
// - If side-effecting (load, store, branch/call/return, possible trap), or if
// used outside of this block, or if demanded by another inst, then lower.
//
// That's it! Lowering of side-effecting ops will force all *needed*
// (live) non-side-effecting ops to be lowered at the right places, via
// the `use_input_reg()` callback on the `LowerCtx` (that's us). That's
// because `use_input_reg()` sets the eager/demand bit for any insts
// whose result registers are used.
//
// We build up the BB in reverse instruction order in `bb_insts`.
// Because the machine backend calls `ctx.emit()` in forward order, we
// collect per-IR-inst lowered instructions in `ir_insts`, then reverse
// these and append to `bb_insts` as we go backward through the block.
// `bb_insts` are then reversed again and appended to the VCode at the
// end of the BB (in the toplevel driver `lower()`).
for inst in self.f.layout.block_insts(block).rev() {
let data = &self.f.dfg[inst];
let value_needed = self
.f
.dfg
.inst_results(inst)
.iter()
.any(|&result| self.vreg_needed[self.value_regs[result].get_index()]);
debug!(
"lower_clif_block: block {} inst {} ({:?}) is_branch {} inst_needed {} value_needed {}",
block,
inst,
data,
data.opcode().is_branch(),
self.inst_needed[inst],
value_needed,
);
if self.f.dfg[inst].opcode().is_branch() {
continue;
}
// Normal instruction: codegen if eager bit is set. (Other instructions may also be
// codegened if not eager when they are used by another instruction.)
if self.inst_needed[inst] || value_needed {
debug!("lowering: inst {}: {:?}", inst, self.f.dfg[inst]);
backend.lower(self, inst)?;
}
if data.opcode().is_return() {
// Return: handle specially, using ABI-appropriate sequence.
let gen_ret = if data.opcode() == Opcode::Return {
GenerateReturn::Yes
} else {
debug_assert!(data.opcode() == Opcode::FallthroughReturn);
GenerateReturn::No
};
self.gen_retval_setup(gen_ret);
}
let loc = self.srcloc(inst);
self.finish_ir_inst(loc);
}
Ok(())
}
fn finish_ir_inst(&mut self, loc: SourceLoc) {
// `bb_insts` is kept in reverse order, so emit the instructions in
// reverse order.
for mut tuple in self.ir_insts.drain(..).rev() {
tuple.loc = loc;
self.bb_insts.push(tuple);
}
}
fn finish_bb(&mut self) {
let start = self.block_insts.len();
for tuple in self.bb_insts.drain(..).rev() {
self.block_insts.push(tuple);
}
let end = self.block_insts.len();
self.block_ranges.push((start, end));
}
fn copy_bbs_to_vcode(&mut self) {
for &(start, end) in self.block_ranges.iter().rev() {
for &InstTuple {
loc,
is_safepoint,
ref inst,
} in &self.block_insts[start..end]
{
self.vcode.set_srcloc(loc);
self.vcode.push(inst.clone(), is_safepoint);
}
self.vcode.end_bb();
}
}
fn lower_clif_branches<B: LowerBackend<MInst = I>>(
&mut self,
backend: &B,
block: Block,
branches: &SmallVec<[Inst; 2]>,
targets: &SmallVec<[MachLabel; 2]>,
maybe_fallthrough: Option<MachLabel>,
) -> CodegenResult<()> {
debug!(
"lower_clif_branches: block {} branches {:?} targets {:?} maybe_fallthrough {:?}",
block, branches, targets, maybe_fallthrough
);
backend.lower_branch_group(self, branches, targets, maybe_fallthrough)?;
let loc = self.srcloc(branches[0]);
self.finish_ir_inst(loc);
Ok(())
}
fn collect_branches_and_targets(
&self,
bindex: BlockIndex,
_bb: Block,
branches: &mut SmallVec<[Inst; 2]>,
targets: &mut SmallVec<[MachLabel; 2]>,
) {
branches.clear();
targets.clear();
let mut last_inst = None;
for &(inst, succ) in self.vcode.block_order().succ_indices(bindex) {
// Avoid duplicates: this ensures a br_table is only inserted once.
if last_inst != Some(inst) {
branches.push(inst);
} else {
debug_assert!(self.f.dfg[inst].opcode() == Opcode::BrTable);
debug_assert!(branches.len() == 1);
}
last_inst = Some(inst);
targets.push(MachLabel::from_block(succ));
}
}
/// Lower the function.
pub fn lower<B: LowerBackend<MInst = I>>(
mut self,
backend: &B,
) -> CodegenResult<(VCode<I>, StackmapRequestInfo)> {
debug!("about to lower function: {:?}", self.f);
// Initialize the ABI object, giving it a temp if requested.
let maybe_tmp = if self.vcode.abi().temp_needed() {
Some(self.alloc_tmp(RegClass::I64, I64))
} else {
None
};
self.vcode.abi().init(maybe_tmp);
// Get the pinned reg here (we only parameterize this function on `B`,
// not the whole `Lower` impl).
self.pinned_reg = backend.maybe_pinned_reg();
self.vcode.set_entry(0);
// Reused vectors for branch lowering.
let mut branches: SmallVec<[Inst; 2]> = SmallVec::new();
let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new();
// get a copy of the lowered order; we hold this separately because we
// need a mut ref to the vcode to mutate it below.
let lowered_order: SmallVec<[LoweredBlock; 64]> = self
.vcode
.block_order()
.lowered_order()
.iter()
.cloned()
.collect();
// Main lowering loop over lowered blocks.
for (bindex, lb) in lowered_order.iter().enumerate().rev() {
let bindex = bindex as BlockIndex;
// Lower the block body in reverse order (see comment in
// `lower_clif_block()` for rationale).
// End branches.
if let Some(bb) = lb.orig_block() {
self.collect_branches_and_targets(bindex, bb, &mut branches, &mut targets);
if branches.len() > 0 {
let maybe_fallthrough = if (bindex + 1) < (lowered_order.len() as BlockIndex) {
Some(MachLabel::from_block(bindex + 1))
} else {
None
};
self.lower_clif_branches(backend, bb, &branches, &targets, maybe_fallthrough)?;
self.finish_ir_inst(self.srcloc(branches[0]));
}
} else {
// If no orig block, this must be a pure edge block; get the successor and
// emit a jump.
let (_, succ) = self.vcode.block_order().succ_indices(bindex)[0];
self.emit(I::gen_jump(MachLabel::from_block(succ)));
self.finish_ir_inst(SourceLoc::default());
}
// Out-edge phi moves.
if let Some((pred, inst, succ)) = lb.out_edge() {
self.lower_edge(pred, inst, succ)?;
self.finish_ir_inst(SourceLoc::default());
}
// Original block body.
if let Some(bb) = lb.orig_block() {
self.lower_clif_block(backend, bb)?;
}
// In-edge phi moves.
if let Some((pred, inst, succ)) = lb.in_edge() {
self.lower_edge(pred, inst, succ)?;
self.finish_ir_inst(SourceLoc::default());
}
if bindex == 0 {
// Set up the function with arg vreg inits.
self.gen_arg_setup();
self.finish_ir_inst(SourceLoc::default());
}
self.finish_bb();
}
self.copy_bbs_to_vcode();
// Now that we've emitted all instructions into the VCodeBuilder, let's build the VCode.
let (vcode, stackmap_info) = self.vcode.build();
debug!("built vcode: {:?}", vcode);
Ok((vcode, stackmap_info))
}
/// Get the actual inputs for a value. This is the implementation for
/// `get_input()` but starting from the SSA value, which is not exposed to
/// the backend.
fn get_input_for_val(&self, at_inst: Inst, val: Value) -> LowerInput {
debug!("get_input_for_val: val {} at inst {}", val, at_inst);
let mut reg = self.value_regs[val];
debug!(" -> reg {:?}", reg);
assert!(reg.is_valid());
let mut inst = match self.f.dfg.value_def(val) {
// OK to merge source instruction if (i) we have a source
// instruction, and either (ii-a) it has no side effects, or (ii-b)
// it has the same color as this instruction.
ValueDef::Result(src_inst, result_idx) => {
debug!(" -> src inst {}", src_inst);
debug!(
" -> has side effect: {}",
has_side_effect_or_load(self.f, src_inst)
);
debug!(
" -> our color is {:?}, src inst is {:?}",
self.inst_color(at_inst),
self.inst_color(src_inst)
);
if !has_side_effect_or_load(self.f, src_inst)
|| self.inst_color(at_inst) == self.inst_color(src_inst)
{
Some((src_inst, result_idx))
} else {
None
}
}
_ => None,
};
let constant = inst.and_then(|(inst, _)| self.get_constant(inst));
// Pinned-reg hack: if backend specifies a fixed pinned register, use it
// directly when we encounter a GetPinnedReg op, rather than lowering
// the actual op, and do not return the source inst to the caller; the
// value comes "out of the ether" and we will not force generation of
// the superfluous move.
if let Some((i, _)) = inst {
if self.f.dfg[i].opcode() == Opcode::GetPinnedReg {
if let Some(pr) = self.pinned_reg {
reg = pr;
}
inst = None;
}
}
LowerInput {
reg,
inst,
constant,
}
}
}
impl<'func, I: VCodeInst> LowerCtx for Lower<'func, I> {
type I = I;
fn abi(&mut self) -> &dyn ABIBody<I = I> {
self.vcode.abi()
}
fn retval(&self, idx: usize) -> Writable<Reg> {
Writable::from_reg(self.retval_regs[idx])
}
fn get_vm_context(&self) -> Option<Reg> {
self.vm_context
}
fn data(&self, ir_inst: Inst) -> &InstructionData {
&self.f.dfg[ir_inst]
}
fn ty(&self, ir_inst: Inst) -> Type {
self.f.dfg.ctrl_typevar(ir_inst)
}
fn call_target<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance)> {
match &self.f.dfg[ir_inst] {
&InstructionData::Call { func_ref, .. }
| &InstructionData::FuncAddr { func_ref, .. } => {
let funcdata = &self.f.dfg.ext_funcs[func_ref];
let dist = funcdata.reloc_distance();
Some((&funcdata.name, dist))
}
_ => None,
}
}
fn call_sig<'b>(&'b self, ir_inst: Inst) -> Option<&'b Signature> {
match &self.f.dfg[ir_inst] {
&InstructionData::Call { func_ref, .. } => {
let funcdata = &self.f.dfg.ext_funcs[func_ref];
Some(&self.f.dfg.signatures[funcdata.signature])
}
&InstructionData::CallIndirect { sig_ref, .. } => Some(&self.f.dfg.signatures[sig_ref]),
_ => None,
}
}
fn symbol_value<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance, i64)> {
match &self.f.dfg[ir_inst] {
&InstructionData::UnaryGlobalValue { global_value, .. } => {
let gvdata = &self.f.global_values[global_value];
match gvdata {
&GlobalValueData::Symbol {
ref name,
ref offset,
..
} => {
let offset = offset.bits();
let dist = gvdata.maybe_reloc_distance().unwrap();
Some((name, dist, offset))
}
_ => None,
}
}
_ => None,
}
}
fn memflags(&self, ir_inst: Inst) -> Option<MemFlags> {
match &self.f.dfg[ir_inst] {
&InstructionData::AtomicCas { flags, .. } => Some(flags),
&InstructionData::AtomicRmw { flags, .. } => Some(flags),
&InstructionData::Load { flags, .. }
| &InstructionData::LoadComplex { flags, .. }
| &InstructionData::LoadNoOffset { flags, .. }
| &InstructionData::Store { flags, .. }
| &InstructionData::StoreComplex { flags, .. } => Some(flags),
&InstructionData::StoreNoOffset { flags, .. } => Some(flags),
_ => None,
}
}
fn srcloc(&self, ir_inst: Inst) -> SourceLoc {
self.f.srclocs[ir_inst]
}
fn inst_color(&self, ir_inst: Inst) -> InstColor {
self.inst_colors[ir_inst]
}
fn num_inputs(&self, ir_inst: Inst) -> usize {
self.f.dfg.inst_args(ir_inst).len()
}
fn num_outputs(&self, ir_inst: Inst) -> usize {
self.f.dfg.inst_results(ir_inst).len()
}
fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type {
let val = self.f.dfg.inst_args(ir_inst)[idx];
let val = self.f.dfg.resolve_aliases(val);
self.f.dfg.value_type(val)
}
fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type {
self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx])
}
fn get_constant(&self, ir_inst: Inst) -> Option<u64> {
self.inst_constants.get(&ir_inst).cloned()
}
fn get_input(&self, ir_inst: Inst, idx: usize) -> LowerInput {
let val = self.f.dfg.inst_args(ir_inst)[idx];
let val = self.f.dfg.resolve_aliases(val);
self.get_input_for_val(ir_inst, val)
}
fn get_output(&self, ir_inst: Inst, idx: usize) -> Writable<Reg> {
let val = self.f.dfg.inst_results(ir_inst)[idx];
Writable::from_reg(self.value_regs[val])
}
fn alloc_tmp(&mut self, rc: RegClass, ty: Type) -> Writable<Reg> {
let v = self.next_vreg;
self.next_vreg += 1;
let vreg = Reg::new_virtual(rc, v);
self.vcode.set_vreg_type(vreg.as_virtual_reg().unwrap(), ty);
Writable::from_reg(vreg)
}
fn emit(&mut self, mach_inst: I) {
self.ir_insts.push(InstTuple {
loc: SourceLoc::default(),
is_safepoint: false,
inst: mach_inst,
});
}
fn emit_safepoint(&mut self, mach_inst: I) {
self.ir_insts.push(InstTuple {
loc: SourceLoc::default(),
is_safepoint: true,
inst: mach_inst,
});
}
fn use_input_reg(&mut self, input: LowerInput) {
debug!("use_input_reg: vreg {:?} is needed", input.reg);
self.vreg_needed[input.reg.get_index()] = true;
}
fn is_reg_needed(&self, ir_inst: Inst, reg: Reg) -> bool {
self.inst_needed[ir_inst] || self.vreg_needed[reg.get_index()]
}
fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData {
self.f.dfg.constants.get(constant_handle)
}
fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg {
if reg.is_virtual() {
reg
} else {
let rc = reg.get_class();
let new_reg = self.alloc_tmp(rc, ty);
self.emit(I::gen_move(new_reg, reg, ty));
new_reg.to_reg()
}
}
}
/// Visit all successors of a block with a given visitor closure.
pub(crate) fn visit_block_succs<F: FnMut(Inst, Block)>(f: &Function, block: Block, mut visit: F) {
for inst in f.layout.block_likely_branches(block) {
if f.dfg[inst].opcode().is_branch() {
visit_branch_targets(f, block, inst, &mut visit);
}
}
}
fn visit_branch_targets<F: FnMut(Inst, Block)>(
f: &Function,
block: Block,
inst: Inst,
visit: &mut F,
) {
if f.dfg[inst].opcode() == Opcode::Fallthrough {
visit(inst, f.layout.next_block(block).unwrap());
} else {
match f.dfg[inst].analyze_branch(&f.dfg.value_lists) {
BranchInfo::NotABranch => {}
BranchInfo::SingleDest(dest, _) => {
visit(inst, dest);
}
BranchInfo::Table(table, maybe_dest) => {
if let Some(dest) = maybe_dest {
visit(inst, dest);
}
for &dest in f.jump_tables[table].as_slice() {
visit(inst, dest);
}
}
}
}
}