Files
wasmtime/cranelift/codegen/src/machinst/lower.rs
Andrew Brown bd6fe11ca9 cranelift: remove load_complex and store_complex (#3976)
This change removes all variants of `load*_complex` and `store*_complex`
from Cranelift; this is a breaking change to the instructions exposed by
CLIF. The complete list of instructions removed is: `load_complex`,
`store_complex`, `uload8_complex`, `sload8_complex`, `istore8_complex`,
`sload8_complex`, `uload16_complex`, `sload16_complex`,
`istore16_complex`, `uload32_complex`, `sload32_complex`,
`istore32_complex`, `uload8x8_complex`, `sload8x8_complex`,
`sload16x4_complex`, `uload16x4_complex`, `uload32x2_complex`,
`sload32x2_complex`.

The rationale for this removal is that the Cranelift backend now has the
ability to pattern-match multiple upstream additions in order to
calculate the address to access. Previously, this was not possible so
the `*_complex` instructions were needed. Over time, these instructions
have fallen out of use in this repository, making the additional
overhead of maintaining them a chore.
2022-03-31 10:05:10 -07:00

1374 lines
53 KiB
Rust

//! This module implements lowering (instruction selection) from Cranelift IR
//! to machine instructions with virtual registers. This is *almost* the final
//! machine code, except for register allocation.
// TODO: separate the IR-query core of `LowerCtx` from the lowering logic built
// on top of it, e.g. the side-effect/coloring analysis and the scan support.
use crate::data_value::DataValue;
use crate::entity::SecondaryMap;
use crate::fx::{FxHashMap, FxHashSet};
use crate::inst_predicates::{has_lowering_side_effect, is_constant_64bit};
use crate::ir::instructions::BranchInfo;
use crate::ir::{
types::{FFLAGS, IFLAGS},
ArgumentPurpose, Block, Constant, ConstantData, DataFlowGraph, ExternalName, Function,
GlobalValue, GlobalValueData, Inst, InstructionData, MemFlags, Opcode, Signature, SourceLoc,
Type, Value, ValueDef, ValueLabelAssignments, ValueLabelStart,
};
use crate::machinst::{
non_writable_value_regs, writable_value_regs, ABICallee, BlockIndex, BlockLoweringOrder,
LoweredBlock, MachLabel, VCode, VCodeBuilder, VCodeConstant, VCodeConstantData, VCodeConstants,
VCodeInst, ValueRegs,
};
use crate::CodegenResult;
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::convert::TryInto;
use regalloc::{Reg, StackmapRequestInfo, Writable};
use smallvec::{smallvec, SmallVec};
use std::fmt::Debug;
/// An "instruction color" partitions CLIF instructions by side-effecting ops.
/// All instructions with the same "color" are guaranteed not to be separated by
/// any side-effecting op (for this purpose, loads are also considered
/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
/// furthermore, it is guaranteed that for any two instructions A and B such
/// that color(A) == color(B), either A dominates B and B postdominates A, or
/// vice-versa. (For now, in practice, only ops in the same basic block can ever
/// have the same color, trivially providing the second condition.) Intuitively,
/// this means that the ops of the same color must always execute "together", as
/// part of one atomic contiguous section of the dynamic execution trace, and
/// they can be freely permuted (modulo true dataflow dependencies) without
/// affecting program behavior.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
struct InstColor(u32);
impl InstColor {
fn new(n: u32) -> InstColor {
InstColor(n)
}
/// Get an arbitrary index representing this color. The index is unique
/// *within a single function compilation*, but indices may be reused across
/// functions.
pub fn get(self) -> u32 {
self.0
}
}
/// A context that machine-specific lowering code can use to emit lowered
/// instructions. This is the view of the machine-independent per-function
/// lowering context that is seen by the machine backend.
pub trait LowerCtx {
/// The instruction type for which this lowering framework is instantiated.
type I: VCodeInst;
fn dfg(&self) -> &DataFlowGraph;
// Function-level queries:
/// Get the `ABICallee`.
fn abi(&mut self) -> &mut dyn ABICallee<I = Self::I>;
/// Get the (virtual) register that receives the return value. A return
/// instruction should lower into a sequence that fills this register. (Why
/// not allow the backend to specify its own result register for the return?
/// Because there may be multiple return points.)
fn retval(&self, idx: usize) -> ValueRegs<Writable<Reg>>;
/// Returns the vreg containing the VmContext parameter, if there's one.
fn get_vm_context(&self) -> Option<Reg>;
// General instruction queries:
/// Get the instdata for a given IR instruction.
fn data(&self, ir_inst: Inst) -> &InstructionData;
/// Get the controlling type for a polymorphic IR instruction.
fn ty(&self, ir_inst: Inst) -> Type;
/// Get the target for a call instruction, as an `ExternalName`. Returns a tuple
/// providing this name and the "relocation distance", i.e., whether the backend
/// can assume the target will be "nearby" (within some small offset) or an
/// arbitrary address. (This comes from the `colocated` bit in the CLIF.)
fn call_target<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance)>;
/// Get the signature for a call or call-indirect instruction.
fn call_sig<'b>(&'b self, ir_inst: Inst) -> Option<&'b Signature>;
/// Get the symbol name, relocation distance estimate, and offset for a
/// symbol_value instruction.
fn symbol_value<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance, i64)>;
/// Likewise, but starting with a GlobalValue identifier.
fn symbol_value_data<'b>(
&'b self,
global_value: GlobalValue,
) -> Option<(&'b ExternalName, RelocDistance, i64)>;
/// Returns the memory flags of a given memory access.
fn memflags(&self, ir_inst: Inst) -> Option<MemFlags>;
/// Get the source location for a given instruction.
fn srcloc(&self, ir_inst: Inst) -> SourceLoc;
// Instruction input/output queries:
/// Get the number of inputs to the given IR instruction.
fn num_inputs(&self, ir_inst: Inst) -> usize;
/// Get the number of outputs to the given IR instruction.
fn num_outputs(&self, ir_inst: Inst) -> usize;
/// Get the type for an instruction's input.
fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type;
/// Get the type for a value.
fn value_ty(&self, val: Value) -> Type;
/// Get the type for an instruction's output.
fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type;
/// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit
/// value, if possible.
fn get_constant(&self, ir_inst: Inst) -> Option<u64>;
/// Get the input as one of two options other than a direct register:
///
/// - An instruction, given that it is effect-free or able to sink its
/// effect to the current instruction being lowered, and given it has only
/// one output, and if effect-ful, given that this is the only use;
/// - A constant, if the value is a constant.
///
/// The instruction input may be available in either of these forms. It may
/// be available in neither form, if the conditions are not met; if so, use
/// `put_input_in_regs()` instead to get it in a register.
///
/// If the backend merges the effect of a side-effecting instruction, it
/// must call `sink_inst()`. When this is called, it indicates that the
/// effect has been sunk to the current scan location. The sunk
/// instruction's result(s) must have *no* uses remaining, because it will
/// not be codegen'd (it has been integrated into the current instruction).
fn get_input_as_source_or_const(&self, ir_inst: Inst, idx: usize) -> NonRegInput;
/// Like `get_input_as_source_or_const` but with a `Value`.
fn get_value_as_source_or_const(&self, value: Value) -> NonRegInput;
/// Resolves a particular input of an instruction to the `Value` that it is
/// represented with.
fn input_as_value(&self, ir_inst: Inst, idx: usize) -> Value;
/// Put the `idx`th input into register(s) and return the assigned register.
fn put_input_in_regs(&mut self, ir_inst: Inst, idx: usize) -> ValueRegs<Reg>;
/// Put the given value into register(s) and return the assigned register.
fn put_value_in_regs(&mut self, value: Value) -> ValueRegs<Reg>;
/// Get the `idx`th output register(s) of the given IR instruction. When
/// `backend.lower_inst_to_regs(ctx, inst)` is called, it is expected that
/// the backend will write results to these output register(s). This
/// register will always be "fresh"; it is guaranteed not to overlap with
/// any of the inputs, and can be freely used as a scratch register within
/// the lowered instruction sequence, as long as its final value is the
/// result of the computation.
fn get_output(&self, ir_inst: Inst, idx: usize) -> ValueRegs<Writable<Reg>>;
// Codegen primitives: allocate temps, emit instructions, set result registers,
// ask for an input to be gen'd into a register.
/// Get a new temp.
fn alloc_tmp(&mut self, ty: Type) -> ValueRegs<Writable<Reg>>;
/// Emit a machine instruction.
fn emit(&mut self, mach_inst: Self::I);
/// Emit a machine instruction that is a safepoint.
fn emit_safepoint(&mut self, mach_inst: Self::I);
/// Indicate that the side-effect of an instruction has been sunk to the
/// current scan location. This should only be done with the instruction's
/// original results are not used (i.e., `put_input_in_regs` is not invoked
/// for the input produced by the sunk instruction), otherwise the
/// side-effect will occur twice.
fn sink_inst(&mut self, ir_inst: Inst);
/// Retrieve constant data given a handle.
fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData;
/// Indicate that a constant should be emitted.
fn use_constant(&mut self, constant: VCodeConstantData) -> VCodeConstant;
/// Retrieve the value immediate from an instruction. This will perform necessary lookups on the
/// `DataFlowGraph` to retrieve even large immediates.
fn get_immediate(&self, ir_inst: Inst) -> Option<DataValue>;
/// Cause the value in `reg` to be in a virtual reg, by copying it into a new virtual reg
/// if `reg` is a real reg. `ty` describes the type of the value in `reg`.
fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg;
}
/// A representation of all of the ways in which a value is available, aside
/// from as a direct register.
///
/// - An instruction, if it would be allowed to occur at the current location
/// instead (see [LowerCtx::get_input_as_source_or_const()] for more
/// details).
///
/// - A constant, if the value is known to be a constant.
#[derive(Clone, Copy, Debug)]
pub struct NonRegInput {
/// An instruction produces this value (as the given output), and its
/// computation (and side-effect if applicable) could occur at the
/// current instruction's location instead.
///
/// If this instruction's operation is merged into the current instruction,
/// the backend must call [LowerCtx::sink_inst()].
pub inst: Option<(Inst, usize)>,
/// The value is a known constant.
pub constant: Option<u64>,
}
/// A machine backend.
pub trait LowerBackend {
/// The machine instruction type.
type MInst: VCodeInst;
/// Lower a single instruction.
///
/// For a branch, this function should not generate the actual branch
/// instruction. However, it must force any values it needs for the branch
/// edge (block-param actuals) into registers, because the actual branch
/// generation (`lower_branch_group()`) happens *after* any possible merged
/// out-edge.
fn lower<C: LowerCtx<I = Self::MInst>>(&self, ctx: &mut C, inst: Inst) -> CodegenResult<()>;
/// Lower a block-terminating group of branches (which together can be seen
/// as one N-way branch), given a vcode MachLabel for each target.
fn lower_branch_group<C: LowerCtx<I = Self::MInst>>(
&self,
ctx: &mut C,
insts: &[Inst],
targets: &[MachLabel],
) -> CodegenResult<()>;
/// A bit of a hack: give a fixed register that always holds the result of a
/// `get_pinned_reg` instruction, if known. This allows elision of moves
/// into the associated vreg, instead using the real reg directly.
fn maybe_pinned_reg(&self) -> Option<Reg> {
None
}
}
/// A pending instruction to insert and auxiliary information about it: its source location and
/// whether it is a safepoint.
struct InstTuple<I: VCodeInst> {
loc: SourceLoc,
is_safepoint: bool,
inst: I,
}
/// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence
/// from original Inst to MachInsts.
pub struct Lower<'func, I: VCodeInst> {
/// The function to lower.
f: &'func Function,
/// Lowered machine instructions.
vcode: VCodeBuilder<I>,
/// Mapping from `Value` (SSA value in IR) to virtual register.
value_regs: SecondaryMap<Value, ValueRegs<Reg>>,
/// Return-value vregs.
retval_regs: Vec<ValueRegs<Reg>>,
/// Instruction colors at block exits. From this map, we can recover all
/// instruction colors by scanning backward from the block end and
/// decrementing on any color-changing (side-effecting) instruction.
block_end_colors: SecondaryMap<Block, InstColor>,
/// Instruction colors at side-effecting ops. This is the *entry* color,
/// i.e., the version of global state that exists before an instruction
/// executes. For each side-effecting instruction, the *exit* color is its
/// entry color plus one.
side_effect_inst_entry_colors: FxHashMap<Inst, InstColor>,
/// Current color as we scan during lowering. While we are lowering an
/// instruction, this is equal to the color *at entry to* the instruction.
cur_scan_entry_color: Option<InstColor>,
/// Current instruction as we scan during lowering.
cur_inst: Option<Inst>,
/// Instruction constant values, if known.
inst_constants: FxHashMap<Inst, u64>,
/// Use-counts per SSA value, as counted in the input IR.
value_uses: SecondaryMap<Value, u32>,
/// Actual uses of each SSA value so far, incremented while lowering.
value_lowered_uses: SecondaryMap<Value, u32>,
/// Effectful instructions that have been sunk; they are not codegen'd at
/// their original locations.
inst_sunk: FxHashSet<Inst>,
/// Next virtual register number to allocate.
next_vreg: u32,
/// Insts in reverse block order, before final copy to vcode.
block_insts: Vec<InstTuple<I>>,
/// Ranges in `block_insts` constituting BBs.
block_ranges: Vec<(usize, usize)>,
/// Instructions collected for the BB in progress, in reverse order, with
/// source-locs attached.
bb_insts: Vec<InstTuple<I>>,
/// Instructions collected for the CLIF inst in progress, in forward order.
ir_insts: Vec<InstTuple<I>>,
/// The register to use for GetPinnedReg, if any, on this architecture.
pinned_reg: Option<Reg>,
/// The vreg containing the special VmContext parameter, if it is present in the current
/// function's signature.
vm_context: Option<Reg>,
}
/// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a
/// reference.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RelocDistance {
/// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted
/// as approximately "within the compiled output of one module"; e.g., within AArch64's +/-
/// 128MB offset. If unsure, use `Far` instead.
Near,
/// Target of relocation could be anywhere in the address space.
Far,
}
fn alloc_vregs<I: VCodeInst>(
ty: Type,
next_vreg: &mut u32,
vcode: &mut VCodeBuilder<I>,
) -> CodegenResult<ValueRegs<Reg>> {
let v = *next_vreg;
let (regclasses, tys) = I::rc_for_type(ty)?;
*next_vreg += regclasses.len() as u32;
let regs = match regclasses {
&[rc0] => ValueRegs::one(Reg::new_virtual(rc0, v)),
&[rc0, rc1] => ValueRegs::two(Reg::new_virtual(rc0, v), Reg::new_virtual(rc1, v + 1)),
// We can extend this if/when we support 32-bit targets; e.g.,
// an i128 on a 32-bit machine will need up to four machine regs
// for a `Value`.
_ => panic!("Value must reside in 1 or 2 registers"),
};
for (&reg_ty, &reg) in tys.iter().zip(regs.regs().iter()) {
vcode.set_vreg_type(reg.to_virtual_reg(), reg_ty);
}
Ok(regs)
}
enum GenerateReturn {
Yes,
No,
}
impl<'func, I: VCodeInst> Lower<'func, I> {
/// Prepare a new lowering context for the given IR function.
pub fn new(
f: &'func Function,
abi: Box<dyn ABICallee<I = I>>,
emit_info: I::Info,
block_order: BlockLoweringOrder,
) -> CodegenResult<Lower<'func, I>> {
let constants = VCodeConstants::with_capacity(f.dfg.constants.len());
let mut vcode = VCodeBuilder::new(abi, emit_info, block_order, constants);
let mut next_vreg: u32 = 0;
let mut value_regs = SecondaryMap::with_default(ValueRegs::invalid());
// Assign a vreg to each block param and each inst result.
for bb in f.layout.blocks() {
for &param in f.dfg.block_params(bb) {
let ty = f.dfg.value_type(param);
if value_regs[param].is_invalid() {
let regs = alloc_vregs(ty, &mut next_vreg, &mut vcode)?;
value_regs[param] = regs;
log::trace!("bb {} param {}: regs {:?}", bb, param, regs);
}
}
for inst in f.layout.block_insts(bb) {
for &result in f.dfg.inst_results(inst) {
let ty = f.dfg.value_type(result);
if value_regs[result].is_invalid() {
let regs = alloc_vregs(ty, &mut next_vreg, &mut vcode)?;
value_regs[result] = regs;
log::trace!(
"bb {} inst {} ({:?}): result regs {:?}",
bb,
inst,
f.dfg[inst],
regs,
);
}
}
}
}
let vm_context = vcode
.abi()
.signature()
.special_param_index(ArgumentPurpose::VMContext)
.map(|vm_context_index| {
let entry_block = f.layout.entry_block().unwrap();
let param = f.dfg.block_params(entry_block)[vm_context_index];
value_regs[param].only_reg().unwrap()
});
// Assign vreg(s) to each return value.
let mut retval_regs = vec![];
for ret in &vcode.abi().signature().returns.clone() {
let regs = alloc_vregs(ret.value_type, &mut next_vreg, &mut vcode)?;
retval_regs.push(regs);
log::trace!("retval gets regs {:?}", regs);
}
// Compute instruction colors, find constant instructions, and find instructions with
// side-effects, in one combined pass.
let mut cur_color = 0;
let mut block_end_colors = SecondaryMap::with_default(InstColor::new(0));
let mut side_effect_inst_entry_colors = FxHashMap::default();
let mut inst_constants = FxHashMap::default();
let mut value_uses = SecondaryMap::with_default(0);
for bb in f.layout.blocks() {
cur_color += 1;
for inst in f.layout.block_insts(bb) {
let side_effect = has_lowering_side_effect(f, inst);
log::trace!("bb {} inst {} has color {}", bb, inst, cur_color);
if side_effect {
side_effect_inst_entry_colors.insert(inst, InstColor::new(cur_color));
log::trace!(" -> side-effecting; incrementing color for next inst");
cur_color += 1;
}
// Determine if this is a constant; if so, add to the table.
if let Some(c) = is_constant_64bit(f, inst) {
log::trace!(" -> constant: {}", c);
inst_constants.insert(inst, c);
}
// Count uses of all arguments.
for arg in f.dfg.inst_args(inst) {
let arg = f.dfg.resolve_aliases(*arg);
value_uses[arg] += 1;
}
}
block_end_colors[bb] = InstColor::new(cur_color);
}
Ok(Lower {
f,
vcode,
value_regs,
retval_regs,
block_end_colors,
side_effect_inst_entry_colors,
inst_constants,
next_vreg,
value_uses,
value_lowered_uses: SecondaryMap::default(),
inst_sunk: FxHashSet::default(),
cur_scan_entry_color: None,
cur_inst: None,
block_insts: vec![],
block_ranges: vec![],
bb_insts: vec![],
ir_insts: vec![],
pinned_reg: None,
vm_context,
})
}
fn gen_arg_setup(&mut self) {
if let Some(entry_bb) = self.f.layout.entry_block() {
log::trace!(
"gen_arg_setup: entry BB {} args are:\n{:?}",
entry_bb,
self.f.dfg.block_params(entry_bb)
);
for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
if !self.vcode.abi().arg_is_needed_in_body(i) {
continue;
}
let regs = writable_value_regs(self.value_regs[*param]);
for insn in self.vcode.abi().gen_copy_arg_to_regs(i, regs).into_iter() {
self.emit(insn);
}
if self.abi().signature().params[i].purpose == ArgumentPurpose::StructReturn {
assert!(regs.len() == 1);
let ty = self.abi().signature().params[i].value_type;
// The ABI implementation must have ensured that a StructReturn
// arg is present in the return values.
let struct_ret_idx = self
.abi()
.signature()
.returns
.iter()
.position(|ret| ret.purpose == ArgumentPurpose::StructReturn)
.expect("StructReturn return value not present!");
self.emit(I::gen_move(
Writable::from_reg(self.retval_regs[struct_ret_idx].regs()[0]),
regs.regs()[0].to_reg(),
ty,
));
}
}
if let Some(insn) = self.vcode.abi().gen_retval_area_setup() {
self.emit(insn);
}
}
}
fn gen_retval_setup(&mut self, gen_ret_inst: GenerateReturn) {
// Hack: to keep `vmctx` alive, if it exists, we emit a value label here
// for it if debug info is requested. This ensures that it exists either
// in a register or spillslot throughout the entire function body, and
// allows for a better debugging experience.
if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
self.emit_value_label_marks_for_value(vmctx_val);
}
let retval_regs = self.retval_regs.clone();
for (i, regs) in retval_regs.into_iter().enumerate() {
let regs = writable_value_regs(regs);
for insn in self
.vcode
.abi()
.gen_copy_regs_to_retval(i, regs)
.into_iter()
{
self.emit(insn);
}
}
let inst = match gen_ret_inst {
GenerateReturn::Yes => self.vcode.abi().gen_ret(),
GenerateReturn::No => self.vcode.abi().gen_epilogue_placeholder(),
};
self.emit(inst);
}
fn lower_edge(&mut self, pred: Block, inst: Inst, succ: Block) -> CodegenResult<()> {
log::trace!("lower_edge: pred {} succ {}", pred, succ);
let num_args = self.f.dfg.block_params(succ).len();
debug_assert!(num_args == self.f.dfg.inst_variable_args(inst).len());
// Most blocks have no params, so skip all the hoop-jumping below and make an early exit.
if num_args == 0 {
return Ok(());
}
self.cur_inst = Some(inst);
// Make up two vectors of info:
//
// * one for dsts which are to be assigned constants. We'll deal with those second, so
// as to minimise live ranges.
//
// * one for dsts whose sources are non-constants.
let mut const_bundles: SmallVec<[_; 16]> = SmallVec::new();
let mut var_bundles: SmallVec<[_; 16]> = SmallVec::new();
let mut i = 0;
for (dst_val, src_val) in self
.f
.dfg
.block_params(succ)
.iter()
.zip(self.f.dfg.inst_variable_args(inst).iter())
{
let src_val = self.f.dfg.resolve_aliases(*src_val);
let ty = self.f.dfg.value_type(src_val);
debug_assert!(ty == self.f.dfg.value_type(*dst_val));
let dst_regs = self.value_regs[*dst_val];
let input = self.get_value_as_source_or_const(src_val);
log::trace!("jump arg {} is {}", i, src_val);
i += 1;
if let Some(c) = input.constant {
log::trace!(" -> constant {}", c);
const_bundles.push((ty, writable_value_regs(dst_regs), c));
} else {
let src_regs = self.put_value_in_regs(src_val);
log::trace!(" -> reg {:?}", src_regs);
// Skip self-assignments. Not only are they pointless, they falsely trigger the
// overlap-check below and hence can cause a lot of unnecessary copying through
// temporaries.
if dst_regs != src_regs {
var_bundles.push((ty, writable_value_regs(dst_regs), src_regs));
}
}
}
// Deal first with the moves whose sources are variables.
// FIXME: use regalloc.rs' SparseSetU here. This would avoid all heap allocation
// for cases of up to circa 16 args. Currently not possible because regalloc.rs
// does not export it.
let mut src_reg_set = FxHashSet::<Reg>::default();
for (_, _, src_regs) in &var_bundles {
for &reg in src_regs.regs() {
src_reg_set.insert(reg);
}
}
let mut overlaps = false;
'outer: for (_, dst_regs, _) in &var_bundles {
for &reg in dst_regs.regs() {
if src_reg_set.contains(&reg.to_reg()) {
overlaps = true;
break 'outer;
}
}
}
// If, as is mostly the case, the source and destination register sets are non
// overlapping, then we can copy directly, so as to save the register allocator work.
if !overlaps {
for (ty, dst_regs, src_regs) in &var_bundles {
let (_, reg_tys) = I::rc_for_type(*ty)?;
for ((dst, src), reg_ty) in dst_regs
.regs()
.iter()
.zip(src_regs.regs().iter())
.zip(reg_tys.iter())
{
self.emit(I::gen_move(*dst, *src, *reg_ty));
}
}
} else {
// There's some overlap, so play safe and copy via temps.
let mut tmp_regs = SmallVec::<[ValueRegs<Writable<Reg>>; 16]>::new();
for (ty, _, _) in &var_bundles {
tmp_regs.push(self.alloc_tmp(*ty));
}
for ((ty, _, src_reg), tmp_reg) in var_bundles.iter().zip(tmp_regs.iter()) {
let (_, reg_tys) = I::rc_for_type(*ty)?;
for ((tmp, src), reg_ty) in tmp_reg
.regs()
.iter()
.zip(src_reg.regs().iter())
.zip(reg_tys.iter())
{
self.emit(I::gen_move(*tmp, *src, *reg_ty));
}
}
for ((ty, dst_reg, _), tmp_reg) in var_bundles.iter().zip(tmp_regs.iter()) {
let (_, reg_tys) = I::rc_for_type(*ty)?;
for ((dst, tmp), reg_ty) in dst_reg
.regs()
.iter()
.zip(tmp_reg.regs().iter())
.zip(reg_tys.iter())
{
self.emit(I::gen_move(*dst, tmp.to_reg(), *reg_ty));
}
}
}
// Now, finally, deal with the moves whose sources are constants.
for (ty, dst_reg, const_val) in &const_bundles {
for inst in I::gen_constant(*dst_reg, *const_val as u128, *ty, |ty| {
self.alloc_tmp(ty).only_reg().unwrap()
})
.into_iter()
{
self.emit(inst);
}
}
Ok(())
}
/// Has this instruction been sunk to a use-site (i.e., away from its
/// original location)?
fn is_inst_sunk(&self, inst: Inst) -> bool {
self.inst_sunk.contains(&inst)
}
// Is any result of this instruction needed?
fn is_any_inst_result_needed(&self, inst: Inst) -> bool {
self.f
.dfg
.inst_results(inst)
.iter()
.any(|&result| self.value_lowered_uses[result] > 0)
}
fn lower_clif_block<B: LowerBackend<MInst = I>>(
&mut self,
backend: &B,
block: Block,
) -> CodegenResult<()> {
self.cur_scan_entry_color = Some(self.block_end_colors[block]);
// Lowering loop:
// - For each non-branch instruction, in reverse order:
// - If side-effecting (load, store, branch/call/return, possible trap), or if
// used outside of this block, or if demanded by another inst, then lower.
//
// That's it! Lowering of side-effecting ops will force all *needed*
// (live) non-side-effecting ops to be lowered at the right places, via
// the `use_input_reg()` callback on the `LowerCtx` (that's us). That's
// because `use_input_reg()` sets the eager/demand bit for any insts
// whose result registers are used.
//
// We build up the BB in reverse instruction order in `bb_insts`.
// Because the machine backend calls `ctx.emit()` in forward order, we
// collect per-IR-inst lowered instructions in `ir_insts`, then reverse
// these and append to `bb_insts` as we go backward through the block.
// `bb_insts` are then reversed again and appended to the VCode at the
// end of the BB (in the toplevel driver `lower()`).
for inst in self.f.layout.block_insts(block).rev() {
let data = &self.f.dfg[inst];
let has_side_effect = has_lowering_side_effect(self.f, inst);
// If inst has been sunk to another location, skip it.
if self.is_inst_sunk(inst) {
continue;
}
// Are any outputs used at least once?
let value_needed = self.is_any_inst_result_needed(inst);
log::trace!(
"lower_clif_block: block {} inst {} ({:?}) is_branch {} side_effect {} value_needed {}",
block,
inst,
data,
data.opcode().is_branch(),
has_side_effect,
value_needed,
);
// Update scan state to color prior to this inst (as we are scanning
// backward).
self.cur_inst = Some(inst);
if has_side_effect {
let entry_color = *self
.side_effect_inst_entry_colors
.get(&inst)
.expect("every side-effecting inst should have a color-map entry");
self.cur_scan_entry_color = Some(entry_color);
}
// Skip lowering branches; these are handled separately
// (see `lower_clif_branches()` below).
if self.f.dfg[inst].opcode().is_branch() {
continue;
}
// Normal instruction: codegen if the instruction is side-effecting
// or any of its outputs its used.
if has_side_effect || value_needed {
log::trace!("lowering: inst {}: {:?}", inst, self.f.dfg[inst]);
backend.lower(self, inst)?;
// Emit value-label markers if needed, to later recover debug
// mappings.
self.emit_value_label_markers_for_inst(inst);
}
if data.opcode().is_return() {
// Return: handle specially, using ABI-appropriate sequence.
let gen_ret = if data.opcode() == Opcode::Return {
GenerateReturn::Yes
} else {
debug_assert!(data.opcode() == Opcode::FallthroughReturn);
GenerateReturn::No
};
self.gen_retval_setup(gen_ret);
}
let loc = self.srcloc(inst);
self.finish_ir_inst(loc);
}
self.cur_scan_entry_color = None;
Ok(())
}
fn get_value_labels<'a>(&'a self, val: Value, depth: usize) -> Option<&'a [ValueLabelStart]> {
if let Some(ref values_labels) = self.f.dfg.values_labels {
log::trace!(
"get_value_labels: val {} -> {} -> {:?}",
val,
self.f.dfg.resolve_aliases(val),
values_labels.get(&self.f.dfg.resolve_aliases(val))
);
let val = self.f.dfg.resolve_aliases(val);
match values_labels.get(&val) {
Some(&ValueLabelAssignments::Starts(ref list)) => Some(&list[..]),
Some(&ValueLabelAssignments::Alias { value, .. }) if depth < 10 => {
self.get_value_labels(value, depth + 1)
}
_ => None,
}
} else {
None
}
}
fn emit_value_label_marks_for_value(&mut self, val: Value) {
let mut markers: SmallVec<[I; 4]> = smallvec![];
let regs = self.value_regs[val];
if regs.len() > 1 {
return;
}
let reg = regs.only_reg().unwrap();
if let Some(label_starts) = self.get_value_labels(val, 0) {
let labels = label_starts
.iter()
.map(|&ValueLabelStart { label, .. }| label)
.collect::<FxHashSet<_>>();
for label in labels {
log::trace!(
"value labeling: defines val {:?} -> reg {:?} -> label {:?}",
val,
reg,
label,
);
markers.push(I::gen_value_label_marker(label, reg));
}
}
for marker in markers {
self.emit(marker);
}
}
fn emit_value_label_markers_for_inst(&mut self, inst: Inst) {
if self.f.dfg.values_labels.is_none() {
return;
}
log::trace!(
"value labeling: srcloc {}: inst {}",
self.srcloc(inst),
inst
);
for &val in self.f.dfg.inst_results(inst) {
self.emit_value_label_marks_for_value(val);
}
}
fn emit_value_label_markers_for_block_args(&mut self, block: Block) {
if self.f.dfg.values_labels.is_none() {
return;
}
log::trace!("value labeling: block {}", block);
for &arg in self.f.dfg.block_params(block) {
self.emit_value_label_marks_for_value(arg);
}
self.finish_ir_inst(SourceLoc::default());
}
fn finish_ir_inst(&mut self, loc: SourceLoc) {
// `bb_insts` is kept in reverse order, so emit the instructions in
// reverse order.
for mut tuple in self.ir_insts.drain(..).rev() {
tuple.loc = loc;
self.bb_insts.push(tuple);
}
}
fn finish_bb(&mut self) {
let start = self.block_insts.len();
for tuple in self.bb_insts.drain(..).rev() {
self.block_insts.push(tuple);
}
let end = self.block_insts.len();
self.block_ranges.push((start, end));
}
fn copy_bbs_to_vcode(&mut self) {
for &(start, end) in self.block_ranges.iter().rev() {
for &InstTuple {
loc,
is_safepoint,
ref inst,
} in &self.block_insts[start..end]
{
self.vcode.set_srcloc(loc);
self.vcode.push(inst.clone(), is_safepoint);
}
self.vcode.end_bb();
}
}
fn lower_clif_branches<B: LowerBackend<MInst = I>>(
&mut self,
backend: &B,
block: Block,
branches: &SmallVec<[Inst; 2]>,
targets: &SmallVec<[MachLabel; 2]>,
) -> CodegenResult<()> {
log::trace!(
"lower_clif_branches: block {} branches {:?} targets {:?}",
block,
branches,
targets,
);
// When considering code-motion opportunities, consider the current
// program point to be the first branch.
self.cur_inst = Some(branches[0]);
backend.lower_branch_group(self, branches, targets)?;
let loc = self.srcloc(branches[0]);
self.finish_ir_inst(loc);
Ok(())
}
fn collect_branches_and_targets(
&self,
bindex: BlockIndex,
_bb: Block,
branches: &mut SmallVec<[Inst; 2]>,
targets: &mut SmallVec<[MachLabel; 2]>,
) {
branches.clear();
targets.clear();
let mut last_inst = None;
for &(inst, succ) in self.vcode.block_order().succ_indices(bindex) {
// Avoid duplicates: this ensures a br_table is only inserted once.
if last_inst != Some(inst) {
branches.push(inst);
} else {
debug_assert!(self.f.dfg[inst].opcode() == Opcode::BrTable);
debug_assert!(branches.len() == 1);
}
last_inst = Some(inst);
targets.push(MachLabel::from_block(succ));
}
}
/// Lower the function.
pub fn lower<B: LowerBackend<MInst = I>>(
mut self,
backend: &B,
) -> CodegenResult<(VCode<I>, StackmapRequestInfo)> {
log::trace!("about to lower function: {:?}", self.f);
// Initialize the ABI object, giving it a temp if requested.
let maybe_tmp = if let Some(temp_ty) = self.vcode.abi().temp_needed() {
Some(self.alloc_tmp(temp_ty).only_reg().unwrap())
} else {
None
};
self.vcode.abi().init(maybe_tmp);
// Get the pinned reg here (we only parameterize this function on `B`,
// not the whole `Lower` impl).
self.pinned_reg = backend.maybe_pinned_reg();
self.vcode.set_entry(0);
// Reused vectors for branch lowering.
let mut branches: SmallVec<[Inst; 2]> = SmallVec::new();
let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new();
// get a copy of the lowered order; we hold this separately because we
// need a mut ref to the vcode to mutate it below.
let lowered_order: SmallVec<[LoweredBlock; 64]> = self
.vcode
.block_order()
.lowered_order()
.iter()
.cloned()
.collect();
// Main lowering loop over lowered blocks.
for (bindex, lb) in lowered_order.iter().enumerate().rev() {
let bindex = bindex as BlockIndex;
// Lower the block body in reverse order (see comment in
// `lower_clif_block()` for rationale).
// End branches.
if let Some(bb) = lb.orig_block() {
self.collect_branches_and_targets(bindex, bb, &mut branches, &mut targets);
if branches.len() > 0 {
self.lower_clif_branches(backend, bb, &branches, &targets)?;
self.finish_ir_inst(self.srcloc(branches[0]));
}
} else {
// If no orig block, this must be a pure edge block; get the successor and
// emit a jump.
let (_, succ) = self.vcode.block_order().succ_indices(bindex)[0];
self.emit(I::gen_jump(MachLabel::from_block(succ)));
self.finish_ir_inst(SourceLoc::default());
}
// Out-edge phi moves.
if let Some((pred, inst, succ)) = lb.out_edge() {
self.lower_edge(pred, inst, succ)?;
self.finish_ir_inst(SourceLoc::default());
}
// Original block body.
if let Some(bb) = lb.orig_block() {
self.lower_clif_block(backend, bb)?;
self.emit_value_label_markers_for_block_args(bb);
}
// In-edge phi moves.
if let Some((pred, inst, succ)) = lb.in_edge() {
self.lower_edge(pred, inst, succ)?;
self.finish_ir_inst(SourceLoc::default());
}
if bindex == 0 {
// Set up the function with arg vreg inits.
self.gen_arg_setup();
self.finish_ir_inst(SourceLoc::default());
}
self.finish_bb();
}
self.copy_bbs_to_vcode();
// Now that we've emitted all instructions into the VCodeBuilder, let's build the VCode.
let (vcode, stack_map_info) = self.vcode.build();
log::trace!("built vcode: {:?}", vcode);
Ok((vcode, stack_map_info))
}
}
impl<'func, I: VCodeInst> LowerCtx for Lower<'func, I> {
type I = I;
fn dfg(&self) -> &DataFlowGraph {
&self.f.dfg
}
fn abi(&mut self) -> &mut dyn ABICallee<I = I> {
self.vcode.abi()
}
fn retval(&self, idx: usize) -> ValueRegs<Writable<Reg>> {
writable_value_regs(self.retval_regs[idx])
}
fn get_vm_context(&self) -> Option<Reg> {
self.vm_context
}
fn data(&self, ir_inst: Inst) -> &InstructionData {
&self.f.dfg[ir_inst]
}
fn ty(&self, ir_inst: Inst) -> Type {
self.f.dfg.ctrl_typevar(ir_inst)
}
fn call_target<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance)> {
match &self.f.dfg[ir_inst] {
&InstructionData::Call { func_ref, .. }
| &InstructionData::FuncAddr { func_ref, .. } => {
let funcdata = &self.f.dfg.ext_funcs[func_ref];
let dist = funcdata.reloc_distance();
Some((&funcdata.name, dist))
}
_ => None,
}
}
fn call_sig<'b>(&'b self, ir_inst: Inst) -> Option<&'b Signature> {
match &self.f.dfg[ir_inst] {
&InstructionData::Call { func_ref, .. } => {
let funcdata = &self.f.dfg.ext_funcs[func_ref];
Some(&self.f.dfg.signatures[funcdata.signature])
}
&InstructionData::CallIndirect { sig_ref, .. } => Some(&self.f.dfg.signatures[sig_ref]),
_ => None,
}
}
fn symbol_value<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance, i64)> {
match &self.f.dfg[ir_inst] {
&InstructionData::UnaryGlobalValue { global_value, .. } => {
self.symbol_value_data(global_value)
}
_ => None,
}
}
fn symbol_value_data<'b>(
&'b self,
global_value: GlobalValue,
) -> Option<(&'b ExternalName, RelocDistance, i64)> {
let gvdata = &self.f.global_values[global_value];
match gvdata {
&GlobalValueData::Symbol {
ref name,
ref offset,
..
} => {
let offset = offset.bits();
let dist = gvdata.maybe_reloc_distance().unwrap();
Some((name, dist, offset))
}
_ => None,
}
}
fn memflags(&self, ir_inst: Inst) -> Option<MemFlags> {
match &self.f.dfg[ir_inst] {
&InstructionData::AtomicCas { flags, .. } => Some(flags),
&InstructionData::AtomicRmw { flags, .. } => Some(flags),
&InstructionData::Load { flags, .. }
| &InstructionData::LoadNoOffset { flags, .. }
| &InstructionData::Store { flags, .. } => Some(flags),
&InstructionData::StoreNoOffset { flags, .. } => Some(flags),
_ => None,
}
}
fn srcloc(&self, ir_inst: Inst) -> SourceLoc {
self.f.srclocs[ir_inst]
}
fn num_inputs(&self, ir_inst: Inst) -> usize {
self.f.dfg.inst_args(ir_inst).len()
}
fn num_outputs(&self, ir_inst: Inst) -> usize {
self.f.dfg.inst_results(ir_inst).len()
}
fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type {
self.value_ty(self.input_as_value(ir_inst, idx))
}
fn value_ty(&self, val: Value) -> Type {
self.f.dfg.value_type(val)
}
fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type {
self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx])
}
fn get_constant(&self, ir_inst: Inst) -> Option<u64> {
self.inst_constants.get(&ir_inst).cloned()
}
fn input_as_value(&self, ir_inst: Inst, idx: usize) -> Value {
let val = self.f.dfg.inst_args(ir_inst)[idx];
self.f.dfg.resolve_aliases(val)
}
fn get_input_as_source_or_const(&self, ir_inst: Inst, idx: usize) -> NonRegInput {
let val = self.input_as_value(ir_inst, idx);
self.get_value_as_source_or_const(val)
}
fn get_value_as_source_or_const(&self, val: Value) -> NonRegInput {
log::trace!(
"get_input_for_val: val {} at cur_inst {:?} cur_scan_entry_color {:?}",
val,
self.cur_inst,
self.cur_scan_entry_color,
);
let inst = match self.f.dfg.value_def(val) {
// OK to merge source instruction if (i) we have a source
// instruction, and:
// - It has no side-effects, OR
// - It has a side-effect, has one output value, that one output has
// only one use (this one), and the instruction's color is *one less
// than* the current scan color.
//
// This latter set of conditions is testing whether a
// side-effecting instruction can sink to the current scan
// location; this is possible if the in-color of this inst is
// equal to the out-color of the producing inst, so no other
// side-effecting ops occur between them (which will only be true
// if they are in the same BB, because color increments at each BB
// start).
//
// If it is actually sunk, then in `merge_inst()`, we update the
// scan color so that as we scan over the range past which the
// instruction was sunk, we allow other instructions (that came
// prior to the sunk instruction) to sink.
ValueDef::Result(src_inst, result_idx) => {
let src_side_effect = has_lowering_side_effect(self.f, src_inst);
log::trace!(" -> src inst {}", src_inst);
log::trace!(" -> has lowering side effect: {}", src_side_effect);
if !src_side_effect {
// Pure instruction: always possible to sink.
Some((src_inst, result_idx))
} else {
// Side-effect: test whether this is the only use of the
// only result of the instruction, and whether colors allow
// the code-motion.
if self.cur_scan_entry_color.is_some()
&& self.value_uses[val] == 1
&& self.value_lowered_uses[val] == 0
&& self.num_outputs(src_inst) == 1
&& self
.side_effect_inst_entry_colors
.get(&src_inst)
.unwrap()
.get()
+ 1
== self.cur_scan_entry_color.unwrap().get()
{
Some((src_inst, 0))
} else {
None
}
}
}
_ => None,
};
let constant = inst.and_then(|(inst, _)| self.get_constant(inst));
NonRegInput { inst, constant }
}
fn put_input_in_regs(&mut self, ir_inst: Inst, idx: usize) -> ValueRegs<Reg> {
let val = self.f.dfg.inst_args(ir_inst)[idx];
self.put_value_in_regs(val)
}
fn put_value_in_regs(&mut self, val: Value) -> ValueRegs<Reg> {
let val = self.f.dfg.resolve_aliases(val);
log::trace!("put_value_in_regs: val {}", val);
// Assert that the value is not `iflags`/`fflags`-typed; these
// cannot be reified into normal registers. TODO(#3249)
// eventually remove the `iflags` type altogether!
let ty = self.f.dfg.value_type(val);
assert!(ty != IFLAGS && ty != FFLAGS);
// If the value is a constant, then (re)materialize it at each use. This
// lowers register pressure.
if let Some(c) = self
.f
.dfg
.value_def(val)
.inst()
.and_then(|inst| self.get_constant(inst))
{
let regs = self.alloc_tmp(ty);
log::trace!(" -> regs {:?}", regs);
assert!(regs.is_valid());
let insts = I::gen_constant(regs, c.into(), ty, |ty| {
self.alloc_tmp(ty).only_reg().unwrap()
});
for inst in insts {
self.emit(inst);
}
return non_writable_value_regs(regs);
}
let mut regs = self.value_regs[val];
log::trace!(" -> regs {:?}", regs);
assert!(regs.is_valid());
self.value_lowered_uses[val] += 1;
// Pinned-reg hack: if backend specifies a fixed pinned register, use it
// directly when we encounter a GetPinnedReg op, rather than lowering
// the actual op, and do not return the source inst to the caller; the
// value comes "out of the ether" and we will not force generation of
// the superfluous move.
if let ValueDef::Result(i, 0) = self.f.dfg.value_def(val) {
if self.f.dfg[i].opcode() == Opcode::GetPinnedReg {
if let Some(pr) = self.pinned_reg {
regs = ValueRegs::one(pr);
}
}
}
regs
}
fn get_output(&self, ir_inst: Inst, idx: usize) -> ValueRegs<Writable<Reg>> {
let val = self.f.dfg.inst_results(ir_inst)[idx];
writable_value_regs(self.value_regs[val])
}
fn alloc_tmp(&mut self, ty: Type) -> ValueRegs<Writable<Reg>> {
writable_value_regs(alloc_vregs(ty, &mut self.next_vreg, &mut self.vcode).unwrap())
}
fn emit(&mut self, mach_inst: I) {
self.ir_insts.push(InstTuple {
loc: SourceLoc::default(),
is_safepoint: false,
inst: mach_inst,
});
}
fn emit_safepoint(&mut self, mach_inst: I) {
self.ir_insts.push(InstTuple {
loc: SourceLoc::default(),
is_safepoint: true,
inst: mach_inst,
});
}
fn sink_inst(&mut self, ir_inst: Inst) {
assert!(has_lowering_side_effect(self.f, ir_inst));
assert!(self.cur_scan_entry_color.is_some());
let sunk_inst_entry_color = self
.side_effect_inst_entry_colors
.get(&ir_inst)
.cloned()
.unwrap();
let sunk_inst_exit_color = InstColor::new(sunk_inst_entry_color.get() + 1);
assert!(sunk_inst_exit_color == self.cur_scan_entry_color.unwrap());
self.cur_scan_entry_color = Some(sunk_inst_entry_color);
self.inst_sunk.insert(ir_inst);
}
fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData {
self.f.dfg.constants.get(constant_handle)
}
fn use_constant(&mut self, constant: VCodeConstantData) -> VCodeConstant {
self.vcode.constants().insert(constant)
}
fn get_immediate(&self, ir_inst: Inst) -> Option<DataValue> {
let inst_data = self.data(ir_inst);
match inst_data {
InstructionData::Shuffle { imm, .. } => {
let buffer = self.f.dfg.immediates.get(imm.clone()).unwrap().as_slice();
let value = DataValue::V128(buffer.try_into().expect("a 16-byte data buffer"));
Some(value)
}
InstructionData::UnaryConst {
constant_handle, ..
} => {
let buffer = self.f.dfg.constants.get(constant_handle.clone()).as_slice();
let value = DataValue::V128(buffer.try_into().expect("a 16-byte data buffer"));
Some(value)
}
_ => inst_data.imm_value(),
}
}
fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg {
if reg.is_virtual() {
reg
} else {
let new_reg = self.alloc_tmp(ty).only_reg().unwrap();
self.emit(I::gen_move(new_reg, reg, ty));
new_reg.to_reg()
}
}
}
/// Visit all successors of a block with a given visitor closure.
pub(crate) fn visit_block_succs<F: FnMut(Inst, Block)>(f: &Function, block: Block, mut visit: F) {
for inst in f.layout.block_likely_branches(block) {
if f.dfg[inst].opcode().is_branch() {
visit_branch_targets(f, inst, &mut visit);
}
}
}
fn visit_branch_targets<F: FnMut(Inst, Block)>(f: &Function, inst: Inst, visit: &mut F) {
match f.dfg[inst].analyze_branch(&f.dfg.value_lists) {
BranchInfo::NotABranch => {}
BranchInfo::SingleDest(dest, _) => {
visit(inst, dest);
}
BranchInfo::Table(table, maybe_dest) => {
if let Some(dest) = maybe_dest {
visit(inst, dest);
}
for &dest in f.jump_tables[table].as_slice() {
visit(inst, dest);
}
}
}
}