Alex Crichton fcddb9ca81 x64: Add lea-based lowering for iadd (#5986)
* x64: Refactor `Amode` computation in ISLE

This commit replaces the previous computation of `Amode` with a
different set of rules that are intended to achieve the same purpose but
are structured differently. The motivation for this commit is going to
become more relevant in the next commit where `lea` will be used for the
`iadd` instruction, possibly, on x64. When doing so it caused a stack
overflow in the test suite during the compilation phase of a wasm
module, namely as part of the `amode_add` function. This function is
recursively defined in terms of itself and recurses as deep as the
deepest `iadd`-chain in a program. A particular test in our test suite
has a 10k-long chain of `iadd` which ended up causing a stack overflow
in debug mode.

This stack overflow is caused because the `amode_add` helper in ISLE
unconditionally peels all the `iadd` nodes away and looks at all of
them, even if most end up in intermediate registers along the way. Given
that structure I couldn't find a way to easily abort the recursion. The
new `to_amode` helper is structured in a similar fashion but attempts to
instead only recurse far enough to fold items into the final `Amode`
instead of recursing through items which themselves don't end up in the
`Amode`. Put another way previously the `amode_add` helper might emit
`x64_add` instructions, but it no longer does that.

This goal of this commit is to preserve all the original `Amode`
optimizations, however. For some parts, though, it relies more on egraph
optimizations to run since if an `iadd` is 10k deep it doesn't try to
find a constant buried 9k levels inside there to fold into the `Amode`.
The hope, though, is that with egraphs having run already it's shuffled
constants to the right most of the time and already folded any possible
together.

* x64: Add `lea`-based lowering for `iadd`

This commit adds a rule for the lowering of `iadd` to use `lea` for 32
and 64-bit addition. The theoretical benefit of `lea` over the `add`
instruction is that the `lea` variant can emulate a 3-operand
instruction which doesn't destructively modify on of its operands.
Additionally the `lea` operation can fold in other components such as
constant additions and shifts.

In practice, however, if `lea` is unconditionally used instead of `iadd`
it ends up losing 10% performance on a local `meshoptimizer` benchmark.
My best guess as to what's going on here is that my CPU's dedicated
units for address computation are all overloaded while the ALUs are
basically idle in a memory-intensive loop. Previously when the ALU was
used for `add` and the address units for stores/loads it in theory
pipelined things better (most of this is me shooting in the dark). To
prevent the performance loss here I've updated the lowering of `iadd` to
conditionally sometimes use `lea` and sometimes use `add` depending on
how "complicated" the `Amode` is. Simple ones like `a + b` or `a + $imm`
continue to use `add` (and its subsequent hypothetical extra `mov`
necessary into the result). More complicated ones like `a + b + $imm` or
`a + b << c + $imm` use `lea` as it can remove the need for extra
instructions. Locally at least this fixes the performance loss relative
to unconditionally using `lea`.

One note is that this adds an `OperandSize` argument to the
`MInst::LoadEffectiveAddress` variant to add an encoding for 32-bit
`lea` in addition to the preexisting 64-bit encoding.

* Conditionally use `lea` based on regalloc
2023-03-15 17:14:25 +00:00
2020-02-28 09:16:05 -08:00
2023-03-06 23:47:34 +00:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat supported rustc stable Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS (locally) with a small install script:

curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.

  • Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.

  • Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation.

Languages supported by the Bytecode Alliance:

Languages supported by the community:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%