Alex Crichton fb59de15af Implement fused adapters for (list T) types (#4558)
* Implement fused adapters for `(list T)` types

This commit implements one of the two remaining types for adapter
fusion, lists. This implementation is particularly tricky for a number
of reasons:

* Lists have a number of validity checks which need to be carefully
  implemented. For example the byte length of the list passed to
  allocation in the destination module could overflow the 32-bit index
  space. Additionally lists in 32-bit memories need a check that their
  final address is in-bounds in the address space.

* In the effort to go ahead and support memory64 at the lowest layers
  this is where much of the magic happens. Lists are naturally always
  stored in memory and shifting between 64/32-bit address spaces
  is done here. This notably required plumbing an `Options` around
  during flattening/size/alignment calculations due to the size/types of
  lists changing depending on the memory configuration.

I've also added a small `factc` program in this commit which should
hopefully assist in exploring and debugging adapter modules. This takes
as input a component (text or binary format) and then generates an
adapter module for all component function signatures found internally.

This commit notably does not include tests for lists. I tried to figure
out a good way to add these but I felt like there were too many cases to
test and the tests would otherwise be extremely verbose. Instead I think
the best testing strategy for this commit will be through #4537 which
should be relatively extensible to testing adapters between modules in
addition to host-based lifting/lowering.

* Improve handling of lists of 0-size types

* Skip overflow checks on byte sizes for 0-size types
* Skip the copy loop entirely when src/dst are both 0
* Skip the increments of src/dst pointers if either is 0-size

* Update semantics for zero-sized lists/strings

When a list/string has a 0-byte-size the base pointer is no longer
verified to be in-bounds to match the supposedly desired adapter
semantics where no trap happens because no turn of the loop happens.
2022-08-01 17:02:08 -05:00
2022-07-25 22:01:02 +00:00
2020-02-28 09:16:05 -08:00
2022-05-31 08:44:44 -07:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat supported rustc stable Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS with a small install script:

curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime's runtime is also optimized for cases such as efficient instantiation, low-overhead transitions between the embedder and wasm, and scalability of concurrent instances.

  • Secure. Wasmtime's development is strongly focused on the correctness of its implementation with 24/7 fuzzing donated by Google's OSS Fuzz, leveraging Rust's API and runtime safety guarantees, careful design of features and APIs through an RFC process, a security policy in place for when things go wrong, and a release policy for patching older versions as well. We follow best practices for defense-in-depth and known protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.

  • Configurable. Wastime supports a rich set of APIs and build time configuration to provide many options such as further means of restricting WebAssembly beyond its basic guarantees such as its CPU and Memory consumption. Wasmtime also runs in tiny environments all the way up to massive servers with many concurrent instances.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%