Files
wasmtime/crates/jit/src/compiler.rs
Peter Huene f7e9f86ba9 Refactor unwind generation in Cranelift.
This commit makes the following changes to unwind information generation in
Cranelift:

* Remove frame layout change implementation in favor of processing the prologue
  and epilogue instructions when unwind information is requested.  This also
  means this work is no longer performed for Windows, which didn't utilize it.
  It also helps simplify the prologue and epilogue generation code.

* Remove the unwind sink implementation that required each unwind information
  to be represented in final form. For FDEs, this meant writing a
  complete frame table per function, which wastes 20 bytes or so for each
  function with duplicate CIEs.  This also enables Cranelift users to collect the
  unwind information and write it as a single frame table.

* For System V calling convention, the unwind information is no longer stored
  in code memory (it's only a requirement for Windows ABI to do so).  This allows
  for more compact code memory for modules with a lot of functions.

* Deletes some duplicate code relating to frame table generation.  Users can
  now simply use gimli to create a frame table from each function's unwind
  information.

Fixes #1181.
2020-04-16 11:15:32 -07:00

433 lines
14 KiB
Rust

//! JIT compilation.
use crate::code_memory::CodeMemory;
use crate::instantiate::SetupError;
use cranelift_codegen::ir::ExternalName;
use cranelift_codegen::ir::InstBuilder;
use cranelift_codegen::print_errors::pretty_error;
use cranelift_codegen::Context;
use cranelift_codegen::{binemit, ir};
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
use std::collections::HashMap;
use wasmtime_debug::{emit_debugsections_image, DebugInfoData};
use wasmtime_environ::entity::{EntityRef, PrimaryMap};
use wasmtime_environ::isa::{TargetFrontendConfig, TargetIsa};
use wasmtime_environ::wasm::{DefinedFuncIndex, DefinedMemoryIndex, MemoryIndex};
use wasmtime_environ::{
CacheConfig, CompileError, CompiledFunction, Compiler as _C, ModuleAddressMap,
ModuleMemoryOffset, ModuleTranslation, ModuleVmctxInfo, Relocation, RelocationTarget,
Relocations, Traps, Tunables, VMOffsets,
};
use wasmtime_runtime::{
InstantiationError, SignatureRegistry, VMFunctionBody, VMSharedSignatureIndex, VMTrampoline,
};
/// Select which kind of compilation to use.
#[derive(Copy, Clone, Debug)]
pub enum CompilationStrategy {
/// Let Wasmtime pick the strategy.
Auto,
/// Compile all functions with Cranelift.
Cranelift,
/// Compile all functions with Lightbeam.
#[cfg(feature = "lightbeam")]
Lightbeam,
}
/// A WebAssembly code JIT compiler.
///
/// A `Compiler` instance owns the executable memory that it allocates.
///
/// TODO: Evolve this to support streaming rather than requiring a `&[u8]`
/// containing a whole wasm module at once.
///
/// TODO: Consider using cranelift-module.
pub struct Compiler {
isa: Box<dyn TargetIsa>,
code_memory: CodeMemory,
signatures: SignatureRegistry,
strategy: CompilationStrategy,
cache_config: CacheConfig,
tunables: Tunables,
}
impl Compiler {
/// Construct a new `Compiler`.
pub fn new(
isa: Box<dyn TargetIsa>,
strategy: CompilationStrategy,
cache_config: CacheConfig,
tunables: Tunables,
) -> Self {
Self {
isa,
code_memory: CodeMemory::new(),
signatures: SignatureRegistry::new(),
strategy,
cache_config,
tunables,
}
}
}
#[allow(missing_docs)]
pub struct Compilation {
pub finished_functions: PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
pub relocations: Relocations,
pub trampolines: HashMap<VMSharedSignatureIndex, VMTrampoline>,
pub trampoline_relocations: HashMap<VMSharedSignatureIndex, Vec<Relocation>>,
pub jt_offsets: PrimaryMap<DefinedFuncIndex, ir::JumpTableOffsets>,
pub dbg_image: Option<Vec<u8>>,
pub traps: Traps,
pub address_transform: ModuleAddressMap,
}
impl Compiler {
/// Return the target's frontend configuration settings.
pub fn frontend_config(&self) -> TargetFrontendConfig {
self.isa.frontend_config()
}
/// Return the tunables in use by this engine.
pub fn tunables(&self) -> &Tunables {
&self.tunables
}
/// Compile the given function bodies.
pub(crate) fn compile<'data>(
&mut self,
translation: &ModuleTranslation,
debug_data: Option<DebugInfoData>,
) -> Result<Compilation, SetupError> {
let (compilation, relocations, address_transform, value_ranges, stack_slots, traps) =
match self.strategy {
// For now, interpret `Auto` as `Cranelift` since that's the most stable
// implementation.
CompilationStrategy::Auto | CompilationStrategy::Cranelift => {
wasmtime_environ::cranelift::Cranelift::compile_module(
translation,
&*self.isa,
&self.cache_config,
)
}
#[cfg(feature = "lightbeam")]
CompilationStrategy::Lightbeam => {
wasmtime_environ::lightbeam::Lightbeam::compile_module(
translation,
&*self.isa,
&self.cache_config,
)
}
}
.map_err(SetupError::Compile)?;
// Allocate all of the compiled functions into executable memory,
// copying over their contents.
let finished_functions =
allocate_functions(&mut self.code_memory, &compilation).map_err(|message| {
SetupError::Instantiate(InstantiationError::Resource(format!(
"failed to allocate memory for functions: {}",
message
)))
})?;
// Eagerly generate a entry trampoline for every type signature in the
// module. This should be "relatively lightweight" for most modules and
// guarantees that all functions (including indirect ones through
// tables) have a trampoline when invoked through the wasmtime API.
let mut cx = FunctionBuilderContext::new();
let mut trampolines = HashMap::new();
let mut trampoline_relocations = HashMap::new();
for sig in translation.module.local.signatures.values() {
let index = self.signatures.register(sig);
if trampolines.contains_key(&index) {
continue;
}
let (trampoline, relocations) = make_trampoline(
&*self.isa,
&mut self.code_memory,
&mut cx,
sig,
std::mem::size_of::<u128>(),
)?;
trampolines.insert(index, trampoline);
// Typically trampolines do not have relocations, so if one does
// show up be sure to log it in case anyone's listening and there's
// an accidental bug.
if relocations.len() > 0 {
log::info!("relocations found in trampoline for {:?}", sig);
trampoline_relocations.insert(index, relocations);
}
}
// Translate debug info (DWARF) only if at least one function is present.
let dbg_image = if debug_data.is_some() && !finished_functions.is_empty() {
let target_config = self.isa.frontend_config();
let ofs = VMOffsets::new(target_config.pointer_bytes(), &translation.module.local);
let mut funcs = Vec::new();
for (i, allocated) in finished_functions.into_iter() {
let ptr = (*allocated) as *const u8;
let body_len = compilation.get(i).body.len();
funcs.push((ptr, body_len));
}
let module_vmctx_info = {
ModuleVmctxInfo {
memory_offset: if ofs.num_imported_memories > 0 {
ModuleMemoryOffset::Imported(ofs.vmctx_vmmemory_import(MemoryIndex::new(0)))
} else if ofs.num_defined_memories > 0 {
ModuleMemoryOffset::Defined(
ofs.vmctx_vmmemory_definition_base(DefinedMemoryIndex::new(0)),
)
} else {
ModuleMemoryOffset::None
},
stack_slots,
}
};
let bytes = emit_debugsections_image(
&*self.isa,
debug_data.as_ref().unwrap(),
&module_vmctx_info,
&address_transform,
&value_ranges,
&funcs,
&compilation,
)
.map_err(SetupError::DebugInfo)?;
Some(bytes)
} else {
None
};
let jt_offsets = compilation.get_jt_offsets();
Ok(Compilation {
finished_functions,
relocations,
trampolines,
trampoline_relocations,
jt_offsets,
dbg_image,
traps,
address_transform,
})
}
/// Make memory containing compiled code executable.
pub(crate) fn publish_compiled_code(&mut self) {
self.code_memory.publish(self.isa.as_ref());
}
/// Shared signature registry.
pub fn signatures(&self) -> &SignatureRegistry {
&self.signatures
}
}
/// Create a trampoline for invoking a function.
pub fn make_trampoline(
isa: &dyn TargetIsa,
code_memory: &mut CodeMemory,
fn_builder_ctx: &mut FunctionBuilderContext,
signature: &ir::Signature,
value_size: usize,
) -> Result<(VMTrampoline, Vec<Relocation>), SetupError> {
let pointer_type = isa.pointer_type();
let mut wrapper_sig = ir::Signature::new(isa.frontend_config().default_call_conv);
// Add the callee `vmctx` parameter.
wrapper_sig.params.push(ir::AbiParam::special(
pointer_type,
ir::ArgumentPurpose::VMContext,
));
// Add the caller `vmctx` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type));
// Add the `callee_address` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type));
// Add the `values_vec` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type));
let mut context = Context::new();
context.func = ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wrapper_sig);
{
let mut builder = FunctionBuilder::new(&mut context.func, fn_builder_ctx);
let block0 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
builder.seal_block(block0);
let (vmctx_ptr_val, caller_vmctx_ptr_val, callee_value, values_vec_ptr_val) = {
let params = builder.func.dfg.block_params(block0);
(params[0], params[1], params[2], params[3])
};
// Load the argument values out of `values_vec`.
let mflags = ir::MemFlags::trusted();
let callee_args = signature
.params
.iter()
.enumerate()
.map(|(i, r)| {
match i {
0 => vmctx_ptr_val,
1 => caller_vmctx_ptr_val,
_ =>
// i - 2 because vmctx and caller vmctx aren't passed through `values_vec`.
{
builder.ins().load(
r.value_type,
mflags,
values_vec_ptr_val,
((i - 2) * value_size) as i32,
)
}
}
})
.collect::<Vec<_>>();
let new_sig = builder.import_signature(signature.clone());
let call = builder
.ins()
.call_indirect(new_sig, callee_value, &callee_args);
let results = builder.func.dfg.inst_results(call).to_vec();
// Store the return values into `values_vec`.
let mflags = ir::MemFlags::trusted();
for (i, r) in results.iter().enumerate() {
builder
.ins()
.store(mflags, *r, values_vec_ptr_val, (i * value_size) as i32);
}
builder.ins().return_(&[]);
builder.finalize()
}
let mut code_buf = Vec::new();
let mut reloc_sink = RelocSink::default();
let mut trap_sink = binemit::NullTrapSink {};
let mut stackmap_sink = binemit::NullStackmapSink {};
context
.compile_and_emit(
isa,
&mut code_buf,
&mut reloc_sink,
&mut trap_sink,
&mut stackmap_sink,
)
.map_err(|error| {
SetupError::Compile(CompileError::Codegen(pretty_error(
&context.func,
Some(isa),
error,
)))
})?;
let unwind_info = context.create_unwind_info(isa).map_err(|error| {
SetupError::Compile(CompileError::Codegen(pretty_error(
&context.func,
Some(isa),
error,
)))
})?;
let ptr = code_memory
.allocate_for_function(&CompiledFunction {
body: code_buf,
jt_offsets: context.func.jt_offsets,
unwind_info,
})
.map_err(|message| SetupError::Instantiate(InstantiationError::Resource(message)))?
.as_ptr();
Ok((
unsafe { std::mem::transmute::<*const VMFunctionBody, VMTrampoline>(ptr) },
reloc_sink.relocs,
))
}
fn allocate_functions(
code_memory: &mut CodeMemory,
compilation: &wasmtime_environ::Compilation,
) -> Result<PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>, String> {
if compilation.is_empty() {
return Ok(PrimaryMap::new());
}
let fat_ptrs = code_memory.allocate_for_compilation(compilation)?;
// Second, create a PrimaryMap from result vector of pointers.
let mut result = PrimaryMap::with_capacity(compilation.len());
for i in 0..fat_ptrs.len() {
let fat_ptr: *mut [VMFunctionBody] = fat_ptrs[i];
result.push(fat_ptr);
}
Ok(result)
}
/// We don't expect trampoline compilation to produce many relocations, so
/// this `RelocSink` just asserts that it doesn't recieve most of them, but
/// handles libcall ones.
#[derive(Default)]
struct RelocSink {
relocs: Vec<Relocation>,
}
impl binemit::RelocSink for RelocSink {
fn reloc_block(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_block_offset: binemit::CodeOffset,
) {
panic!("trampoline compilation should not produce block relocs");
}
fn reloc_external(
&mut self,
offset: binemit::CodeOffset,
_srcloc: ir::SourceLoc,
reloc: binemit::Reloc,
name: &ir::ExternalName,
addend: binemit::Addend,
) {
let reloc_target = if let ExternalName::LibCall(libcall) = *name {
RelocationTarget::LibCall(libcall)
} else {
panic!("unrecognized external name")
};
self.relocs.push(Relocation {
reloc,
reloc_target,
offset,
addend,
});
}
fn reloc_constant(
&mut self,
_code_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_constant_offset: ir::ConstantOffset,
) {
panic!("trampoline compilation should not produce constant relocs");
}
fn reloc_jt(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_jt: ir::JumpTable,
) {
panic!("trampoline compilation should not produce jump table relocs");
}
}