If a block is marked cold but has side-effect-free code that is only used by side-effectful code in non-cold blocks, we will erroneously fail to emit it, causing a regalloc failure. This is due to the interaction of block ordering and lowering: we rely on block ordering to visit uses before defs (except for backedges) so that we can effectively do an inline liveness analysis and skip lowering operations that are not used anywhere. This "inline DCE" is needed because instruction lowering can pattern-match and merge one instruction into another, removing the need to generate the source instruction. Unfortunately, the way that I added cold-block support in #3698 was oblivious to this -- it just changed the block sort order. For efficiency reasons, we generate code in its final order directly, so it would not be tenable to generate it in e.g. RPO first and then reorder cold blocks to the bottom; we really do want to visit in the same order as the final code. This PR fixes the bug by moving the point at which cold blocks are sunk to emission-time instead. This is cheaper than either trying to visit blocks during lowering in RPO but add to VCode out-of-order, or trying to do some expensive analysis to recover proper liveness. It's not clear that the latter would be possible anyway -- the need to lower some instructions depends on other instructions' isel results/merging success, so we really do need to visit in RPO, and we can't simply lower all instructions as side-effecting roots (some can't be toplevel nodes). The one downside of this approach is that the VCode itself still has cold blocks inline; so in the text format (and hence compile-tests) it's not possible to see the sinking. This PR adds a test for cold-block sinking that actually verifies the machine code. (The test also includes an add-instruction in the cold path that would have been incorrectly skipped prior to this fix.) Fortunately this bug would not have been triggered by the one current use of cold blocks in #3699, because there the only operation in the cold block was an (always effectful) call instruction. The worst-case effect of the bug in other code would be a regalloc panic; no silent miscompilations could result.
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS with a small install script:
$ curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.
-
Configurable. Whether you need to precompile your wasm ahead of time, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders or usewasmtimeConan package - [C++] - the
wasmtime-cpprepository or usewasmtime-cppConan package - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!
It's Wasmtime.