* x64: Add non-SSE4.1 lowerings of `pmov{s,z}x*`
This commit adds lowerings for a suite of sign/zero extension
instructions which don't require SSE4.1. Like before these lowerings are
based on LLVM's output.
This commit also deletes special casees for `i16x8.extmul_{low,high}_*`
since the output of the special case is the same as the default lowering
of all the component instructions used within as well.
* Remove SSE4.1 specialization of `uwiden_high`
LLVM prefers the `punpckh*`-based lowerings and at least according to
`llvm-mca` these are slightly better cycle-wise too.
4003 lines
164 KiB
Rust
4003 lines
164 KiB
Rust
use crate::binemit::{Addend, Reloc};
|
|
use crate::ir::immediates::{Ieee32, Ieee64};
|
|
use crate::ir::TrapCode;
|
|
use crate::ir::{KnownSymbol, LibCall};
|
|
use crate::isa::x64::encoding::evex::{EvexInstruction, EvexVectorLength};
|
|
use crate::isa::x64::encoding::rex::{
|
|
emit_simm, emit_std_enc_enc, emit_std_enc_mem, emit_std_reg_mem, emit_std_reg_reg, int_reg_enc,
|
|
low8_will_sign_extend_to_32, low8_will_sign_extend_to_64, reg_enc, LegacyPrefixes, OpcodeMap,
|
|
RexFlags,
|
|
};
|
|
use crate::isa::x64::encoding::vex::{RegisterOrAmode, VexInstruction, VexVectorLength};
|
|
use crate::isa::x64::inst::args::*;
|
|
use crate::isa::x64::inst::*;
|
|
use crate::machinst::{inst_common, MachBuffer, MachInstEmit, MachLabel, Reg, Writable};
|
|
use core::convert::TryInto;
|
|
|
|
/// A small helper to generate a signed conversion instruction.
|
|
fn emit_signed_cvt(
|
|
sink: &mut MachBuffer<Inst>,
|
|
info: &EmitInfo,
|
|
state: &mut EmitState,
|
|
// Required to be RealRegs.
|
|
src: Reg,
|
|
dst: Writable<Reg>,
|
|
to_f64: bool,
|
|
) {
|
|
// Handle an unsigned int, which is the "easy" case: a signed conversion will do the
|
|
// right thing.
|
|
let op = if to_f64 {
|
|
SseOpcode::Cvtsi2sd
|
|
} else {
|
|
SseOpcode::Cvtsi2ss
|
|
};
|
|
let inst = Inst::gpr_to_xmm(op, RegMem::reg(src), OperandSize::Size64, dst);
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
|
|
/// Emits a one way conditional jump if CC is set (true).
|
|
fn one_way_jmp(sink: &mut MachBuffer<Inst>, cc: CC, label: MachLabel) {
|
|
let cond_start = sink.cur_offset();
|
|
let cond_disp_off = cond_start + 2;
|
|
sink.use_label_at_offset(cond_disp_off, label, LabelUse::JmpRel32);
|
|
sink.put1(0x0F);
|
|
sink.put1(0x80 + cc.get_enc());
|
|
sink.put4(0x0);
|
|
}
|
|
|
|
/// Emits a relocation, attaching the current source location as well.
|
|
fn emit_reloc(sink: &mut MachBuffer<Inst>, kind: Reloc, name: &ExternalName, addend: Addend) {
|
|
sink.add_reloc(kind, name, addend);
|
|
}
|
|
|
|
/// The top-level emit function.
|
|
///
|
|
/// Important! Do not add improved (shortened) encoding cases to existing
|
|
/// instructions without also adding tests for those improved encodings. That
|
|
/// is a dangerous game that leads to hard-to-track-down errors in the emitted
|
|
/// code.
|
|
///
|
|
/// For all instructions, make sure to have test coverage for all of the
|
|
/// following situations. Do this by creating the cross product resulting from
|
|
/// applying the following rules to each operand:
|
|
///
|
|
/// (1) for any insn that mentions a register: one test using a register from
|
|
/// the group [rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi] and a second one
|
|
/// using a register from the group [r8, r9, r10, r11, r12, r13, r14, r15].
|
|
/// This helps detect incorrect REX prefix construction.
|
|
///
|
|
/// (2) for any insn that mentions a byte register: one test for each of the
|
|
/// four encoding groups [al, cl, dl, bl], [spl, bpl, sil, dil],
|
|
/// [r8b .. r11b] and [r12b .. r15b]. This checks that
|
|
/// apparently-redundant REX prefixes are retained when required.
|
|
///
|
|
/// (3) for any insn that contains an immediate field, check the following
|
|
/// cases: field is zero, field is in simm8 range (-128 .. 127), field is
|
|
/// in simm32 range (-0x8000_0000 .. 0x7FFF_FFFF). This is because some
|
|
/// instructions that require a 32-bit immediate have a short-form encoding
|
|
/// when the imm is in simm8 range.
|
|
///
|
|
/// Rules (1), (2) and (3) don't apply for registers within address expressions
|
|
/// (`Addr`s). Those are already pretty well tested, and the registers in them
|
|
/// don't have any effect on the containing instruction (apart from possibly
|
|
/// require REX prefix bits).
|
|
///
|
|
/// When choosing registers for a test, avoid using registers with the same
|
|
/// offset within a given group. For example, don't use rax and r8, since they
|
|
/// both have the lowest 3 bits as 000, and so the test won't detect errors
|
|
/// where those 3-bit register sub-fields are confused by the emitter. Instead
|
|
/// use (eg) rax (lo3 = 000) and r9 (lo3 = 001). Similarly, don't use (eg) cl
|
|
/// and bpl since they have the same offset in their group; use instead (eg) cl
|
|
/// and sil.
|
|
///
|
|
/// For all instructions, also add a test that uses only low-half registers
|
|
/// (rax .. rdi, xmm0 .. xmm7) etc, so as to check that any redundant REX
|
|
/// prefixes are correctly omitted. This low-half restriction must apply to
|
|
/// _all_ registers in the insn, even those in address expressions.
|
|
///
|
|
/// Following these rules creates large numbers of test cases, but it's the
|
|
/// only way to make the emitter reliable.
|
|
///
|
|
/// Known possible improvements:
|
|
///
|
|
/// * there's a shorter encoding for shl/shr/sar by a 1-bit immediate. (Do we
|
|
/// care?)
|
|
pub(crate) fn emit(
|
|
inst: &Inst,
|
|
allocs: &mut AllocationConsumer<'_>,
|
|
sink: &mut MachBuffer<Inst>,
|
|
info: &EmitInfo,
|
|
state: &mut EmitState,
|
|
) {
|
|
let matches_isa_flags = |iset_requirement: &InstructionSet| -> bool {
|
|
match iset_requirement {
|
|
// Cranelift assumes SSE2 at least.
|
|
InstructionSet::SSE | InstructionSet::SSE2 => true,
|
|
InstructionSet::SSSE3 => info.isa_flags.use_ssse3(),
|
|
InstructionSet::SSE41 => info.isa_flags.use_sse41(),
|
|
InstructionSet::SSE42 => info.isa_flags.use_sse42(),
|
|
InstructionSet::Popcnt => info.isa_flags.use_popcnt(),
|
|
InstructionSet::Lzcnt => info.isa_flags.use_lzcnt(),
|
|
InstructionSet::BMI1 => info.isa_flags.use_bmi1(),
|
|
InstructionSet::BMI2 => info.isa_flags.has_bmi2(),
|
|
InstructionSet::FMA => info.isa_flags.has_fma(),
|
|
InstructionSet::AVX => info.isa_flags.has_avx(),
|
|
InstructionSet::AVX2 => info.isa_flags.has_avx2(),
|
|
InstructionSet::AVX512BITALG => info.isa_flags.has_avx512bitalg(),
|
|
InstructionSet::AVX512DQ => info.isa_flags.has_avx512dq(),
|
|
InstructionSet::AVX512F => info.isa_flags.has_avx512f(),
|
|
InstructionSet::AVX512VBMI => info.isa_flags.has_avx512vbmi(),
|
|
InstructionSet::AVX512VL => info.isa_flags.has_avx512vl(),
|
|
}
|
|
};
|
|
|
|
// Certain instructions may be present in more than one ISA feature set; we must at least match
|
|
// one of them in the target CPU.
|
|
let isa_requirements = inst.available_in_any_isa();
|
|
if !isa_requirements.is_empty() && !isa_requirements.iter().all(matches_isa_flags) {
|
|
panic!(
|
|
"Cannot emit inst '{:?}' for target; failed to match ISA requirements: {:?}",
|
|
inst, isa_requirements
|
|
)
|
|
}
|
|
|
|
match inst {
|
|
Inst::AluRmiR {
|
|
size,
|
|
op,
|
|
src1,
|
|
src2,
|
|
dst: reg_g,
|
|
} => {
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let reg_g = allocs.next(reg_g.to_reg().to_reg());
|
|
debug_assert_eq!(src1, reg_g);
|
|
let src2 = src2.clone().to_reg_mem_imm().with_allocs(allocs);
|
|
|
|
let prefix = if *size == OperandSize::Size16 {
|
|
LegacyPrefixes::_66
|
|
} else {
|
|
LegacyPrefixes::None
|
|
};
|
|
|
|
let mut rex = RexFlags::from(*size);
|
|
if *op == AluRmiROpcode::Mul {
|
|
// We kinda freeloaded Mul into RMI_R_Op, but it doesn't fit the usual pattern, so
|
|
// we have to special-case it.
|
|
if *size == OperandSize::Size8 {
|
|
match src2 {
|
|
RegMemImm::Reg { reg: reg_e } => {
|
|
debug_assert!(reg_e.is_real());
|
|
rex.always_emit_if_8bit_needed(reg_e);
|
|
let enc_e = int_reg_enc(reg_e);
|
|
emit_std_enc_enc(sink, LegacyPrefixes::None, 0xF6, 1, 5, enc_e, rex);
|
|
}
|
|
|
|
RegMemImm::Mem { addr } => {
|
|
let amode = addr.finalize(state, sink);
|
|
emit_std_enc_mem(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
0xF6,
|
|
1,
|
|
5,
|
|
&amode,
|
|
rex,
|
|
0,
|
|
);
|
|
}
|
|
|
|
RegMemImm::Imm { .. } => {
|
|
panic!("Cannot emit 8bit imul with 8bit immediate");
|
|
}
|
|
}
|
|
} else {
|
|
match src2 {
|
|
RegMemImm::Reg { reg: reg_e } => {
|
|
emit_std_reg_reg(sink, prefix, 0x0FAF, 2, reg_g, reg_e, rex);
|
|
}
|
|
|
|
RegMemImm::Mem { addr } => {
|
|
let amode = addr.finalize(state, sink);
|
|
emit_std_reg_mem(sink, prefix, 0x0FAF, 2, reg_g, &amode, rex, 0);
|
|
}
|
|
|
|
RegMemImm::Imm { simm32 } => {
|
|
let imm_size = if low8_will_sign_extend_to_32(simm32) {
|
|
1
|
|
} else {
|
|
if *size == OperandSize::Size16 {
|
|
2
|
|
} else {
|
|
4
|
|
}
|
|
};
|
|
let opcode = if imm_size == 1 { 0x6B } else { 0x69 };
|
|
// Yes, really, reg_g twice.
|
|
emit_std_reg_reg(sink, prefix, opcode, 1, reg_g, reg_g, rex);
|
|
emit_simm(sink, imm_size, simm32);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
let (opcode_r, opcode_m, subopcode_i) = match op {
|
|
AluRmiROpcode::Add => (0x01, 0x03, 0),
|
|
AluRmiROpcode::Adc => (0x11, 0x03, 0),
|
|
AluRmiROpcode::Sub => (0x29, 0x2B, 5),
|
|
AluRmiROpcode::Sbb => (0x19, 0x2B, 5),
|
|
AluRmiROpcode::And => (0x21, 0x23, 4),
|
|
AluRmiROpcode::Or => (0x09, 0x0B, 1),
|
|
AluRmiROpcode::Xor => (0x31, 0x33, 6),
|
|
AluRmiROpcode::Mul => panic!("unreachable"),
|
|
};
|
|
|
|
let (opcode_r, opcode_m) = if *size == OperandSize::Size8 {
|
|
(opcode_r - 1, opcode_m - 1)
|
|
} else {
|
|
(opcode_r, opcode_m)
|
|
};
|
|
|
|
if *size == OperandSize::Size8 {
|
|
debug_assert!(reg_g.is_real());
|
|
rex.always_emit_if_8bit_needed(reg_g);
|
|
}
|
|
|
|
match src2 {
|
|
RegMemImm::Reg { reg: reg_e } => {
|
|
if *size == OperandSize::Size8 {
|
|
debug_assert!(reg_e.is_real());
|
|
rex.always_emit_if_8bit_needed(reg_e);
|
|
}
|
|
|
|
// GCC/llvm use the swapped operand encoding (viz., the R/RM vs RM/R
|
|
// duality). Do this too, so as to be able to compare generated machine
|
|
// code easily.
|
|
emit_std_reg_reg(sink, prefix, opcode_r, 1, reg_e, reg_g, rex);
|
|
}
|
|
|
|
RegMemImm::Mem { addr } => {
|
|
let amode = addr.finalize(state, sink);
|
|
// Here we revert to the "normal" G-E ordering.
|
|
emit_std_reg_mem(sink, prefix, opcode_m, 1, reg_g, &amode, rex, 0);
|
|
}
|
|
|
|
RegMemImm::Imm { simm32 } => {
|
|
let imm_size = if *size == OperandSize::Size8 {
|
|
1
|
|
} else {
|
|
if low8_will_sign_extend_to_32(simm32) {
|
|
1
|
|
} else {
|
|
if *size == OperandSize::Size16 {
|
|
2
|
|
} else {
|
|
4
|
|
}
|
|
}
|
|
};
|
|
|
|
let opcode = if *size == OperandSize::Size8 {
|
|
0x80
|
|
} else if low8_will_sign_extend_to_32(simm32) {
|
|
0x83
|
|
} else {
|
|
0x81
|
|
};
|
|
|
|
// And also here we use the "normal" G-E ordering.
|
|
let enc_g = int_reg_enc(reg_g);
|
|
emit_std_enc_enc(sink, prefix, opcode, 1, subopcode_i, enc_g, rex);
|
|
emit_simm(sink, imm_size, simm32);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::AluConstOp { op, size, dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
emit(
|
|
&Inst::AluRmiR {
|
|
size: *size,
|
|
op: *op,
|
|
dst: Writable::from_reg(Gpr::new(dst).unwrap()),
|
|
src1: Gpr::new(dst).unwrap(),
|
|
src2: Gpr::new(dst).unwrap().into(),
|
|
},
|
|
allocs,
|
|
sink,
|
|
info,
|
|
state,
|
|
);
|
|
}
|
|
|
|
Inst::AluRM {
|
|
size,
|
|
src1_dst,
|
|
src2,
|
|
op,
|
|
} => {
|
|
let src2 = allocs.next(src2.to_reg());
|
|
let src1_dst = src1_dst.finalize(state, sink).with_allocs(allocs);
|
|
|
|
let opcode = match op {
|
|
AluRmiROpcode::Add => 0x01,
|
|
AluRmiROpcode::Sub => 0x29,
|
|
AluRmiROpcode::And => 0x21,
|
|
AluRmiROpcode::Or => 0x09,
|
|
AluRmiROpcode::Xor => 0x31,
|
|
_ => panic!("Unsupported read-modify-write ALU opcode"),
|
|
};
|
|
|
|
let prefix = if *size == OperandSize::Size16 {
|
|
LegacyPrefixes::_66
|
|
} else {
|
|
LegacyPrefixes::None
|
|
};
|
|
let opcode = if *size == OperandSize::Size8 {
|
|
opcode - 1
|
|
} else {
|
|
opcode
|
|
};
|
|
|
|
let mut rex = RexFlags::from(*size);
|
|
if *size == OperandSize::Size8 {
|
|
debug_assert!(src2.is_real());
|
|
rex.always_emit_if_8bit_needed(src2);
|
|
}
|
|
|
|
let enc_g = int_reg_enc(src2);
|
|
emit_std_enc_mem(sink, prefix, opcode, 1, enc_g, &src1_dst, rex, 0);
|
|
}
|
|
|
|
Inst::AluRmRVex {
|
|
size,
|
|
op,
|
|
dst,
|
|
src1,
|
|
src2,
|
|
} => {
|
|
use AluRmROpcode::*;
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let src2 = allocs.next(src2.to_reg());
|
|
|
|
let w = match size {
|
|
OperandSize::Size32 => false,
|
|
OperandSize::Size64 => true,
|
|
|
|
// the other cases would be rejected by isle constructors
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let opcode = match op {
|
|
Andn => 0xf2,
|
|
};
|
|
|
|
VexInstruction::new()
|
|
.map(OpcodeMap::_0F38)
|
|
.w(w)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc())
|
|
.vvvv(src1.to_real_reg().unwrap().hw_enc())
|
|
.rm(src2.to_real_reg().unwrap().hw_enc())
|
|
.opcode(opcode)
|
|
.encode(sink);
|
|
}
|
|
|
|
Inst::UnaryRmR { size, op, src, dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let rex_flags = RexFlags::from(*size);
|
|
use UnaryRmROpcode::*;
|
|
let prefix = match size {
|
|
OperandSize::Size16 => match op {
|
|
Bsr | Bsf => LegacyPrefixes::_66,
|
|
Lzcnt | Tzcnt | Popcnt => LegacyPrefixes::_66F3,
|
|
},
|
|
OperandSize::Size32 | OperandSize::Size64 => match op {
|
|
Bsr | Bsf => LegacyPrefixes::None,
|
|
Lzcnt | Tzcnt | Popcnt => LegacyPrefixes::_F3,
|
|
},
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let (opcode, num_opcodes) = match op {
|
|
Bsr => (0x0fbd, 2),
|
|
Bsf => (0x0fbc, 2),
|
|
Lzcnt => (0x0fbd, 2),
|
|
Tzcnt => (0x0fbc, 2),
|
|
Popcnt => (0x0fb8, 2),
|
|
};
|
|
|
|
match src.clone().into() {
|
|
RegMem::Reg { reg: src } => {
|
|
let src = allocs.next(src);
|
|
emit_std_reg_reg(sink, prefix, opcode, num_opcodes, dst, src, rex_flags);
|
|
}
|
|
RegMem::Mem { addr: src } => {
|
|
let amode = src.finalize(state, sink).with_allocs(allocs);
|
|
emit_std_reg_mem(sink, prefix, opcode, num_opcodes, dst, &amode, rex_flags, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::Not { size, src, dst } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(src, dst);
|
|
let rex_flags = RexFlags::from((*size, dst));
|
|
let (opcode, prefix) = match size {
|
|
OperandSize::Size8 => (0xF6, LegacyPrefixes::None),
|
|
OperandSize::Size16 => (0xF7, LegacyPrefixes::_66),
|
|
OperandSize::Size32 => (0xF7, LegacyPrefixes::None),
|
|
OperandSize::Size64 => (0xF7, LegacyPrefixes::None),
|
|
};
|
|
|
|
let subopcode = 2;
|
|
let enc_src = int_reg_enc(dst);
|
|
emit_std_enc_enc(sink, prefix, opcode, 1, subopcode, enc_src, rex_flags)
|
|
}
|
|
|
|
Inst::Neg { size, src, dst } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(src, dst);
|
|
let rex_flags = RexFlags::from((*size, dst));
|
|
let (opcode, prefix) = match size {
|
|
OperandSize::Size8 => (0xF6, LegacyPrefixes::None),
|
|
OperandSize::Size16 => (0xF7, LegacyPrefixes::_66),
|
|
OperandSize::Size32 => (0xF7, LegacyPrefixes::None),
|
|
OperandSize::Size64 => (0xF7, LegacyPrefixes::None),
|
|
};
|
|
|
|
let subopcode = 3;
|
|
let enc_src = int_reg_enc(dst);
|
|
emit_std_enc_enc(sink, prefix, opcode, 1, subopcode, enc_src, rex_flags)
|
|
}
|
|
|
|
Inst::Div {
|
|
sign,
|
|
trap,
|
|
divisor,
|
|
..
|
|
}
|
|
| Inst::Div8 {
|
|
sign,
|
|
trap,
|
|
divisor,
|
|
..
|
|
} => {
|
|
let divisor = divisor.clone().to_reg_mem().with_allocs(allocs);
|
|
let size = match inst {
|
|
Inst::Div {
|
|
size,
|
|
dividend_lo,
|
|
dividend_hi,
|
|
dst_quotient,
|
|
dst_remainder,
|
|
..
|
|
} => {
|
|
let dividend_lo = allocs.next(dividend_lo.to_reg());
|
|
let dividend_hi = allocs.next(dividend_hi.to_reg());
|
|
let dst_quotient = allocs.next(dst_quotient.to_reg().to_reg());
|
|
let dst_remainder = allocs.next(dst_remainder.to_reg().to_reg());
|
|
debug_assert_eq!(dividend_lo, regs::rax());
|
|
debug_assert_eq!(dividend_hi, regs::rdx());
|
|
debug_assert_eq!(dst_quotient, regs::rax());
|
|
debug_assert_eq!(dst_remainder, regs::rdx());
|
|
*size
|
|
}
|
|
Inst::Div8 { dividend, dst, .. } => {
|
|
let dividend = allocs.next(dividend.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(dividend, regs::rax());
|
|
debug_assert_eq!(dst, regs::rax());
|
|
OperandSize::Size8
|
|
}
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let (opcode, prefix) = match size {
|
|
OperandSize::Size8 => (0xF6, LegacyPrefixes::None),
|
|
OperandSize::Size16 => (0xF7, LegacyPrefixes::_66),
|
|
OperandSize::Size32 => (0xF7, LegacyPrefixes::None),
|
|
OperandSize::Size64 => (0xF7, LegacyPrefixes::None),
|
|
};
|
|
|
|
sink.add_trap(*trap);
|
|
|
|
let subopcode = match sign {
|
|
DivSignedness::Signed => 7,
|
|
DivSignedness::Unsigned => 6,
|
|
};
|
|
match divisor {
|
|
RegMem::Reg { reg } => {
|
|
let src = int_reg_enc(reg);
|
|
emit_std_enc_enc(
|
|
sink,
|
|
prefix,
|
|
opcode,
|
|
1,
|
|
subopcode,
|
|
src,
|
|
RexFlags::from((size, reg)),
|
|
)
|
|
}
|
|
RegMem::Mem { addr: src } => {
|
|
let amode = src.finalize(state, sink);
|
|
emit_std_enc_mem(
|
|
sink,
|
|
prefix,
|
|
opcode,
|
|
1,
|
|
subopcode,
|
|
&amode,
|
|
RexFlags::from(size),
|
|
0,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::MulHi {
|
|
size,
|
|
signed,
|
|
src1,
|
|
src2,
|
|
dst_lo,
|
|
dst_hi,
|
|
} => {
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let dst_lo = allocs.next(dst_lo.to_reg().to_reg());
|
|
let dst_hi = allocs.next(dst_hi.to_reg().to_reg());
|
|
debug_assert_eq!(src1, regs::rax());
|
|
debug_assert_eq!(dst_lo, regs::rax());
|
|
debug_assert_eq!(dst_hi, regs::rdx());
|
|
|
|
let rex_flags = RexFlags::from(*size);
|
|
let prefix = match size {
|
|
OperandSize::Size16 => LegacyPrefixes::_66,
|
|
OperandSize::Size32 => LegacyPrefixes::None,
|
|
OperandSize::Size64 => LegacyPrefixes::None,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let subopcode = if *signed { 5 } else { 4 };
|
|
match src2.clone().to_reg_mem() {
|
|
RegMem::Reg { reg } => {
|
|
let reg = allocs.next(reg);
|
|
let src = int_reg_enc(reg);
|
|
emit_std_enc_enc(sink, prefix, 0xF7, 1, subopcode, src, rex_flags)
|
|
}
|
|
RegMem::Mem { addr: src } => {
|
|
let amode = src.finalize(state, sink).with_allocs(allocs);
|
|
emit_std_enc_mem(sink, prefix, 0xF7, 1, subopcode, &amode, rex_flags, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::UMulLo {
|
|
size,
|
|
src1,
|
|
src2,
|
|
dst,
|
|
} => {
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(src1, regs::rax());
|
|
debug_assert_eq!(dst, regs::rax());
|
|
|
|
let mut rex = RexFlags::from(*size);
|
|
let prefix = match size {
|
|
OperandSize::Size16 => LegacyPrefixes::_66,
|
|
_ => LegacyPrefixes::None,
|
|
};
|
|
|
|
let opcode = if *size == OperandSize::Size8 {
|
|
0xF6
|
|
} else {
|
|
0xF7
|
|
};
|
|
|
|
match src2.clone().to_reg_mem() {
|
|
RegMem::Reg { reg } => {
|
|
let reg = allocs.next(reg);
|
|
if *size == OperandSize::Size8 {
|
|
rex.always_emit_if_8bit_needed(reg);
|
|
}
|
|
let reg_e = int_reg_enc(reg);
|
|
emit_std_enc_enc(sink, prefix, opcode, 1, 4, reg_e, rex);
|
|
}
|
|
RegMem::Mem { addr: src } => {
|
|
let amode = src.finalize(state, sink).with_allocs(allocs);
|
|
emit_std_enc_mem(sink, prefix, opcode, 1, 4, &amode, rex, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::SignExtendData { size, src, dst } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(src, regs::rax());
|
|
if *size == OperandSize::Size8 {
|
|
debug_assert_eq!(dst, regs::rax());
|
|
} else {
|
|
debug_assert_eq!(dst, regs::rdx());
|
|
}
|
|
match size {
|
|
OperandSize::Size8 => {
|
|
sink.put1(0x66);
|
|
sink.put1(0x98);
|
|
}
|
|
OperandSize::Size16 => {
|
|
sink.put1(0x66);
|
|
sink.put1(0x99);
|
|
}
|
|
OperandSize::Size32 => sink.put1(0x99),
|
|
OperandSize::Size64 => {
|
|
sink.put1(0x48);
|
|
sink.put1(0x99);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::CheckedSRemSeq { divisor, .. } | Inst::CheckedSRemSeq8 { divisor, .. } => {
|
|
let divisor = allocs.next(divisor.to_reg());
|
|
|
|
// Validate that the register constraints of the dividend and the
|
|
// destination are all as expected.
|
|
let (dst, size) = match inst {
|
|
Inst::CheckedSRemSeq {
|
|
dividend_lo,
|
|
dividend_hi,
|
|
dst_quotient,
|
|
dst_remainder,
|
|
size,
|
|
..
|
|
} => {
|
|
let dividend_lo = allocs.next(dividend_lo.to_reg());
|
|
let dividend_hi = allocs.next(dividend_hi.to_reg());
|
|
let dst_quotient = allocs.next(dst_quotient.to_reg().to_reg());
|
|
let dst_remainder = allocs.next(dst_remainder.to_reg().to_reg());
|
|
debug_assert_eq!(dividend_lo, regs::rax());
|
|
debug_assert_eq!(dividend_hi, regs::rdx());
|
|
debug_assert_eq!(dst_quotient, regs::rax());
|
|
debug_assert_eq!(dst_remainder, regs::rdx());
|
|
(regs::rdx(), *size)
|
|
}
|
|
Inst::CheckedSRemSeq8 { dividend, dst, .. } => {
|
|
let dividend = allocs.next(dividend.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(dividend, regs::rax());
|
|
debug_assert_eq!(dst, regs::rax());
|
|
(regs::rax(), OperandSize::Size8)
|
|
}
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
// Generates the following code sequence:
|
|
//
|
|
// cmp -1 %divisor
|
|
// jnz $do_op
|
|
//
|
|
// ;; for srem, result is 0
|
|
// mov #0, %dst
|
|
// j $done
|
|
//
|
|
// $do_op:
|
|
// idiv %divisor
|
|
//
|
|
// $done:
|
|
|
|
let do_op = sink.get_label();
|
|
let done_label = sink.get_label();
|
|
|
|
// Check if the divisor is -1, and if it isn't then immediately
|
|
// go to the `idiv`.
|
|
let inst = Inst::cmp_rmi_r(size, RegMemImm::imm(0xffffffff), divisor);
|
|
inst.emit(&[], sink, info, state);
|
|
one_way_jmp(sink, CC::NZ, do_op);
|
|
|
|
// ... otherwise the divisor is -1 and the result is always 0. This
|
|
// is written to the destination register which will be %rax for
|
|
// 8-bit srem and %rdx otherwise.
|
|
//
|
|
// Note that for 16-to-64-bit srem operations this leaves the
|
|
// second destination, %rax, unchanged. This isn't semantically
|
|
// correct if a lowering actually tries to use the `dst_quotient`
|
|
// output but for srem only the `dst_remainder` output is used for
|
|
// now.
|
|
let inst = Inst::imm(OperandSize::Size64, 0, Writable::from_reg(dst));
|
|
inst.emit(&[], sink, info, state);
|
|
let inst = Inst::jmp_known(done_label);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// Here the `idiv` is executed, which is different depending on the
|
|
// size
|
|
sink.bind_label(do_op, &mut state.ctrl_plane);
|
|
let inst = match size {
|
|
OperandSize::Size8 => Inst::div8(
|
|
DivSignedness::Signed,
|
|
TrapCode::IntegerDivisionByZero,
|
|
RegMem::reg(divisor),
|
|
Gpr::new(regs::rax()).unwrap(),
|
|
Writable::from_reg(Gpr::new(regs::rax()).unwrap()),
|
|
),
|
|
_ => Inst::div(
|
|
size,
|
|
DivSignedness::Signed,
|
|
TrapCode::IntegerDivisionByZero,
|
|
RegMem::reg(divisor),
|
|
Gpr::new(regs::rax()).unwrap(),
|
|
Gpr::new(regs::rdx()).unwrap(),
|
|
Writable::from_reg(Gpr::new(regs::rax()).unwrap()),
|
|
Writable::from_reg(Gpr::new(regs::rdx()).unwrap()),
|
|
),
|
|
};
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
sink.bind_label(done_label, &mut state.ctrl_plane);
|
|
}
|
|
|
|
Inst::Imm {
|
|
dst_size,
|
|
simm64,
|
|
dst,
|
|
} => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let enc_dst = int_reg_enc(dst);
|
|
if *dst_size == OperandSize::Size64 {
|
|
if low32_will_sign_extend_to_64(*simm64) {
|
|
// Sign-extended move imm32.
|
|
emit_std_enc_enc(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
0xC7,
|
|
1,
|
|
/* subopcode */ 0,
|
|
enc_dst,
|
|
RexFlags::set_w(),
|
|
);
|
|
sink.put4(*simm64 as u32);
|
|
} else {
|
|
sink.put1(0x48 | ((enc_dst >> 3) & 1));
|
|
sink.put1(0xB8 | (enc_dst & 7));
|
|
sink.put8(*simm64);
|
|
}
|
|
} else {
|
|
if ((enc_dst >> 3) & 1) == 1 {
|
|
sink.put1(0x41);
|
|
}
|
|
sink.put1(0xB8 | (enc_dst & 7));
|
|
sink.put4(*simm64 as u32);
|
|
}
|
|
}
|
|
|
|
Inst::MovImmM { size, simm64, dst } => {
|
|
let dst = &dst.finalize(state, sink).with_allocs(allocs);
|
|
let default_rex = RexFlags::clear_w();
|
|
let default_opcode = 0xC7;
|
|
let bytes = size.to_bytes();
|
|
let prefix = LegacyPrefixes::None;
|
|
|
|
let (opcode, rex, size, prefix) = match *size {
|
|
// In the 8-bit case, we don't need to enforce REX flags via
|
|
// `always_emit_if_8bit_needed()` since the destination
|
|
// operand is a memory operand, not a possibly 8-bit register.
|
|
OperandSize::Size8 => (0xC6, default_rex, bytes, prefix),
|
|
OperandSize::Size16 => (0xC7, default_rex, bytes, LegacyPrefixes::_66),
|
|
OperandSize::Size64 => {
|
|
if !low32_will_sign_extend_to_64(*simm64) {
|
|
panic!("Immediate-to-memory moves require immediate operand to sign-extend to 64 bits.");
|
|
}
|
|
|
|
(default_opcode, RexFlags::from(*size), bytes, prefix)
|
|
}
|
|
|
|
_ => (default_opcode, default_rex, bytes, prefix),
|
|
};
|
|
|
|
// 8-bit C6 /0 ib
|
|
// 16-bit 0x66 C7 /0 iw
|
|
// 32-bit C7 /0 id
|
|
// 64-bit REX.W C7 /0 id
|
|
emit_std_enc_mem(sink, prefix, opcode, 1, /*subopcode*/ 0, dst, rex, 0);
|
|
emit_simm(sink, size, *simm64 as u32);
|
|
}
|
|
|
|
Inst::MovRR { size, src, dst } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
emit_std_reg_reg(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
0x89,
|
|
1,
|
|
src,
|
|
dst,
|
|
RexFlags::from(*size),
|
|
);
|
|
}
|
|
|
|
Inst::MovFromPReg { src, dst } => {
|
|
allocs.next_fixed_nonallocatable(*src);
|
|
let src: Reg = (*src).into();
|
|
debug_assert!([regs::rsp(), regs::rbp(), regs::pinned_reg()].contains(&src));
|
|
let src = Gpr::new(src).unwrap();
|
|
let size = OperandSize::Size64;
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let dst = WritableGpr::from_writable_reg(Writable::from_reg(dst)).unwrap();
|
|
Inst::MovRR { size, src, dst }.emit(&[], sink, info, state);
|
|
}
|
|
|
|
Inst::MovToPReg { src, dst } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let src = Gpr::new(src).unwrap();
|
|
allocs.next_fixed_nonallocatable(*dst);
|
|
let dst: Reg = (*dst).into();
|
|
debug_assert!([regs::rsp(), regs::rbp(), regs::pinned_reg()].contains(&dst));
|
|
let dst = WritableGpr::from_writable_reg(Writable::from_reg(dst)).unwrap();
|
|
let size = OperandSize::Size64;
|
|
Inst::MovRR { size, src, dst }.emit(&[], sink, info, state);
|
|
}
|
|
|
|
Inst::MovzxRmR { ext_mode, src, dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let (opcodes, num_opcodes, mut rex_flags) = match ext_mode {
|
|
ExtMode::BL => {
|
|
// MOVZBL is (REX.W==0) 0F B6 /r
|
|
(0x0FB6, 2, RexFlags::clear_w())
|
|
}
|
|
ExtMode::BQ => {
|
|
// MOVZBQ is (REX.W==1) 0F B6 /r
|
|
// I'm not sure why the Intel manual offers different
|
|
// encodings for MOVZBQ than for MOVZBL. AIUI they should
|
|
// achieve the same, since MOVZBL is just going to zero out
|
|
// the upper half of the destination anyway.
|
|
(0x0FB6, 2, RexFlags::set_w())
|
|
}
|
|
ExtMode::WL => {
|
|
// MOVZWL is (REX.W==0) 0F B7 /r
|
|
(0x0FB7, 2, RexFlags::clear_w())
|
|
}
|
|
ExtMode::WQ => {
|
|
// MOVZWQ is (REX.W==1) 0F B7 /r
|
|
(0x0FB7, 2, RexFlags::set_w())
|
|
}
|
|
ExtMode::LQ => {
|
|
// This is just a standard 32 bit load, and we rely on the
|
|
// default zero-extension rule to perform the extension.
|
|
// Note that in reg/reg mode, gcc seems to use the swapped form R/RM, which we
|
|
// don't do here, since it's the same encoding size.
|
|
// MOV r/m32, r32 is (REX.W==0) 8B /r
|
|
(0x8B, 1, RexFlags::clear_w())
|
|
}
|
|
};
|
|
|
|
match src.clone().to_reg_mem() {
|
|
RegMem::Reg { reg: src } => {
|
|
let src = allocs.next(src);
|
|
match ext_mode {
|
|
ExtMode::BL | ExtMode::BQ => {
|
|
// A redundant REX prefix must be emitted for certain register inputs.
|
|
rex_flags.always_emit_if_8bit_needed(src);
|
|
}
|
|
_ => {}
|
|
}
|
|
emit_std_reg_reg(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
opcodes,
|
|
num_opcodes,
|
|
dst,
|
|
src,
|
|
rex_flags,
|
|
)
|
|
}
|
|
|
|
RegMem::Mem { addr: src } => {
|
|
let src = &src.finalize(state, sink).with_allocs(allocs);
|
|
|
|
emit_std_reg_mem(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
opcodes,
|
|
num_opcodes,
|
|
dst,
|
|
src,
|
|
rex_flags,
|
|
0,
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::Mov64MR { src, dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src = &src.finalize(state, sink).with_allocs(allocs);
|
|
|
|
emit_std_reg_mem(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
0x8B,
|
|
1,
|
|
dst,
|
|
src,
|
|
RexFlags::set_w(),
|
|
0,
|
|
)
|
|
}
|
|
|
|
Inst::LoadEffectiveAddress { addr, dst, size } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let amode = addr.finalize(state, sink).with_allocs(allocs);
|
|
|
|
// If this `lea` can actually get encoded as an `add` then do that
|
|
// instead. Currently all candidate `iadd`s become an `lea`
|
|
// pseudo-instruction here but maximizing the sue of `lea` is not
|
|
// necessarily optimal. The `lea` instruction goes through dedicated
|
|
// address units on cores which are finite and disjoint from the
|
|
// general ALU, so if everything uses `lea` then those units can get
|
|
// saturated while leaving the ALU idle.
|
|
//
|
|
// To help make use of more parts of a cpu, this attempts to use
|
|
// `add` when it's semantically equivalent to `lea`, or otherwise
|
|
// when the `dst` register is the same as the `base` or `index`
|
|
// register.
|
|
//
|
|
// FIXME: ideally regalloc is informed of this constraint. Register
|
|
// allocation of `lea` should "attempt" to put the `base` in the
|
|
// same register as `dst` but not at the expense of generating a
|
|
// `mov` instruction. Currently that's not possible but perhaps one
|
|
// day it may be worth it.
|
|
match amode {
|
|
// If `base == dst` then this is `add $imm, %dst`, so encode
|
|
// that instead.
|
|
Amode::ImmReg {
|
|
simm32,
|
|
base,
|
|
flags: _,
|
|
} if base == dst => {
|
|
let inst = Inst::alu_rmi_r(
|
|
*size,
|
|
AluRmiROpcode::Add,
|
|
RegMemImm::imm(simm32),
|
|
Writable::from_reg(dst),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
// If the offset is 0 and the shift is 0 (meaning multiplication
|
|
// by 1) then:
|
|
//
|
|
// * If `base == dst`, then this is `add %index, %base`
|
|
// * If `index == dst`, then this is `add %base, %index`
|
|
//
|
|
// Encode the appropriate instruction here in that case.
|
|
Amode::ImmRegRegShift {
|
|
simm32: 0,
|
|
base,
|
|
index,
|
|
shift: 0,
|
|
flags: _,
|
|
} if base == dst || index == dst => {
|
|
let (dst, operand) = if base == dst {
|
|
(base, index)
|
|
} else {
|
|
(index, base)
|
|
};
|
|
let inst = Inst::alu_rmi_r(
|
|
*size,
|
|
AluRmiROpcode::Add,
|
|
RegMemImm::reg(operand.to_reg()),
|
|
Writable::from_reg(dst.to_reg()),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
|
|
// If `lea`'s 3-operand mode is leveraged by regalloc, or if
|
|
// it's fancy like imm-plus-shift-plus-base, then `lea` is
|
|
// actually emitted.
|
|
_ => {
|
|
let flags = match size {
|
|
OperandSize::Size32 => RexFlags::clear_w(),
|
|
OperandSize::Size64 => RexFlags::set_w(),
|
|
_ => unreachable!(),
|
|
};
|
|
emit_std_reg_mem(sink, LegacyPrefixes::None, 0x8D, 1, dst, &amode, flags, 0);
|
|
}
|
|
};
|
|
}
|
|
|
|
Inst::MovsxRmR { ext_mode, src, dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let (opcodes, num_opcodes, mut rex_flags) = match ext_mode {
|
|
ExtMode::BL => {
|
|
// MOVSBL is (REX.W==0) 0F BE /r
|
|
(0x0FBE, 2, RexFlags::clear_w())
|
|
}
|
|
ExtMode::BQ => {
|
|
// MOVSBQ is (REX.W==1) 0F BE /r
|
|
(0x0FBE, 2, RexFlags::set_w())
|
|
}
|
|
ExtMode::WL => {
|
|
// MOVSWL is (REX.W==0) 0F BF /r
|
|
(0x0FBF, 2, RexFlags::clear_w())
|
|
}
|
|
ExtMode::WQ => {
|
|
// MOVSWQ is (REX.W==1) 0F BF /r
|
|
(0x0FBF, 2, RexFlags::set_w())
|
|
}
|
|
ExtMode::LQ => {
|
|
// MOVSLQ is (REX.W==1) 63 /r
|
|
(0x63, 1, RexFlags::set_w())
|
|
}
|
|
};
|
|
|
|
match src.clone().to_reg_mem() {
|
|
RegMem::Reg { reg: src } => {
|
|
let src = allocs.next(src);
|
|
match ext_mode {
|
|
ExtMode::BL | ExtMode::BQ => {
|
|
// A redundant REX prefix must be emitted for certain register inputs.
|
|
rex_flags.always_emit_if_8bit_needed(src);
|
|
}
|
|
_ => {}
|
|
}
|
|
emit_std_reg_reg(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
opcodes,
|
|
num_opcodes,
|
|
dst,
|
|
src,
|
|
rex_flags,
|
|
)
|
|
}
|
|
|
|
RegMem::Mem { addr: src } => {
|
|
let src = &src.finalize(state, sink).with_allocs(allocs);
|
|
|
|
emit_std_reg_mem(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
opcodes,
|
|
num_opcodes,
|
|
dst,
|
|
src,
|
|
rex_flags,
|
|
0,
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::MovRM { size, src, dst } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = &dst.finalize(state, sink).with_allocs(allocs);
|
|
|
|
let prefix = match size {
|
|
OperandSize::Size16 => LegacyPrefixes::_66,
|
|
_ => LegacyPrefixes::None,
|
|
};
|
|
|
|
let opcode = match size {
|
|
OperandSize::Size8 => 0x88,
|
|
_ => 0x89,
|
|
};
|
|
|
|
// This is one of the few places where the presence of a
|
|
// redundant REX prefix changes the meaning of the
|
|
// instruction.
|
|
let rex = RexFlags::from((*size, src));
|
|
|
|
// 8-bit: MOV r8, r/m8 is (REX.W==0) 88 /r
|
|
// 16-bit: MOV r16, r/m16 is 66 (REX.W==0) 89 /r
|
|
// 32-bit: MOV r32, r/m32 is (REX.W==0) 89 /r
|
|
// 64-bit: MOV r64, r/m64 is (REX.W==1) 89 /r
|
|
emit_std_reg_mem(sink, prefix, opcode, 1, src, dst, rex, 0);
|
|
}
|
|
|
|
Inst::ShiftR {
|
|
size,
|
|
kind,
|
|
src,
|
|
num_bits,
|
|
dst,
|
|
} => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(src, dst);
|
|
let subopcode = match kind {
|
|
ShiftKind::RotateLeft => 0,
|
|
ShiftKind::RotateRight => 1,
|
|
ShiftKind::ShiftLeft => 4,
|
|
ShiftKind::ShiftRightLogical => 5,
|
|
ShiftKind::ShiftRightArithmetic => 7,
|
|
};
|
|
let enc_dst = int_reg_enc(dst);
|
|
let rex_flags = RexFlags::from((*size, dst));
|
|
match num_bits.clone().to_imm8_reg() {
|
|
Imm8Reg::Reg { reg } => {
|
|
let reg = allocs.next(reg);
|
|
debug_assert_eq!(reg, regs::rcx());
|
|
let (opcode, prefix) = match size {
|
|
OperandSize::Size8 => (0xD2, LegacyPrefixes::None),
|
|
OperandSize::Size16 => (0xD3, LegacyPrefixes::_66),
|
|
OperandSize::Size32 => (0xD3, LegacyPrefixes::None),
|
|
OperandSize::Size64 => (0xD3, LegacyPrefixes::None),
|
|
};
|
|
|
|
// SHL/SHR/SAR %cl, reg8 is (REX.W==0) D2 /subopcode
|
|
// SHL/SHR/SAR %cl, reg16 is 66 (REX.W==0) D3 /subopcode
|
|
// SHL/SHR/SAR %cl, reg32 is (REX.W==0) D3 /subopcode
|
|
// SHL/SHR/SAR %cl, reg64 is (REX.W==1) D3 /subopcode
|
|
emit_std_enc_enc(sink, prefix, opcode, 1, subopcode, enc_dst, rex_flags);
|
|
}
|
|
|
|
Imm8Reg::Imm8 { imm: num_bits } => {
|
|
let (opcode, prefix) = match size {
|
|
OperandSize::Size8 => (0xC0, LegacyPrefixes::None),
|
|
OperandSize::Size16 => (0xC1, LegacyPrefixes::_66),
|
|
OperandSize::Size32 => (0xC1, LegacyPrefixes::None),
|
|
OperandSize::Size64 => (0xC1, LegacyPrefixes::None),
|
|
};
|
|
|
|
// SHL/SHR/SAR $ib, reg8 is (REX.W==0) C0 /subopcode
|
|
// SHL/SHR/SAR $ib, reg16 is 66 (REX.W==0) C1 /subopcode
|
|
// SHL/SHR/SAR $ib, reg32 is (REX.W==0) C1 /subopcode ib
|
|
// SHL/SHR/SAR $ib, reg64 is (REX.W==1) C1 /subopcode ib
|
|
// When the shift amount is 1, there's an even shorter encoding, but we don't
|
|
// bother with that nicety here.
|
|
emit_std_enc_enc(sink, prefix, opcode, 1, subopcode, enc_dst, rex_flags);
|
|
sink.put1(num_bits);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::XmmRmiReg {
|
|
opcode,
|
|
src1,
|
|
src2,
|
|
dst,
|
|
} => {
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(src1, dst);
|
|
let rex = RexFlags::clear_w();
|
|
let prefix = LegacyPrefixes::_66;
|
|
let src2 = src2.clone().to_reg_mem_imm();
|
|
if let RegMemImm::Imm { simm32 } = src2 {
|
|
let (opcode_bytes, reg_digit) = match opcode {
|
|
SseOpcode::Psllw => (0x0F71, 6),
|
|
SseOpcode::Pslld => (0x0F72, 6),
|
|
SseOpcode::Psllq => (0x0F73, 6),
|
|
SseOpcode::Psraw => (0x0F71, 4),
|
|
SseOpcode::Psrad => (0x0F72, 4),
|
|
SseOpcode::Psrlw => (0x0F71, 2),
|
|
SseOpcode::Psrld => (0x0F72, 2),
|
|
SseOpcode::Psrlq => (0x0F73, 2),
|
|
_ => panic!("invalid opcode: {}", opcode),
|
|
};
|
|
let dst_enc = reg_enc(dst);
|
|
emit_std_enc_enc(sink, prefix, opcode_bytes, 2, reg_digit, dst_enc, rex);
|
|
let imm = (simm32)
|
|
.try_into()
|
|
.expect("the immediate must be convertible to a u8");
|
|
sink.put1(imm);
|
|
} else {
|
|
let opcode_bytes = match opcode {
|
|
SseOpcode::Psllw => 0x0FF1,
|
|
SseOpcode::Pslld => 0x0FF2,
|
|
SseOpcode::Psllq => 0x0FF3,
|
|
SseOpcode::Psraw => 0x0FE1,
|
|
SseOpcode::Psrad => 0x0FE2,
|
|
SseOpcode::Psrlw => 0x0FD1,
|
|
SseOpcode::Psrld => 0x0FD2,
|
|
SseOpcode::Psrlq => 0x0FD3,
|
|
_ => panic!("invalid opcode: {}", opcode),
|
|
};
|
|
|
|
match src2 {
|
|
RegMemImm::Reg { reg } => {
|
|
let reg = allocs.next(reg);
|
|
emit_std_reg_reg(sink, prefix, opcode_bytes, 2, dst, reg, rex);
|
|
}
|
|
RegMemImm::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink).with_allocs(allocs);
|
|
emit_std_reg_mem(sink, prefix, opcode_bytes, 2, dst, addr, rex, 0);
|
|
}
|
|
RegMemImm::Imm { .. } => unreachable!(),
|
|
}
|
|
};
|
|
}
|
|
|
|
Inst::CmpRmiR {
|
|
size,
|
|
src: src_e,
|
|
dst: reg_g,
|
|
opcode,
|
|
} => {
|
|
let reg_g = allocs.next(reg_g.to_reg());
|
|
|
|
let is_cmp = match opcode {
|
|
CmpOpcode::Cmp => true,
|
|
CmpOpcode::Test => false,
|
|
};
|
|
|
|
let mut prefix = LegacyPrefixes::None;
|
|
if *size == OperandSize::Size16 {
|
|
prefix = LegacyPrefixes::_66;
|
|
}
|
|
// A redundant REX prefix can change the meaning of this instruction.
|
|
let mut rex = RexFlags::from((*size, reg_g));
|
|
|
|
match src_e.clone().to_reg_mem_imm() {
|
|
RegMemImm::Reg { reg: reg_e } => {
|
|
let reg_e = allocs.next(reg_e);
|
|
if *size == OperandSize::Size8 {
|
|
// Check whether the E register forces the use of a redundant REX.
|
|
rex.always_emit_if_8bit_needed(reg_e);
|
|
}
|
|
|
|
// Use the swapped operands encoding for CMP, to stay consistent with the output of
|
|
// gcc/llvm.
|
|
let opcode = match (*size, is_cmp) {
|
|
(OperandSize::Size8, true) => 0x38,
|
|
(_, true) => 0x39,
|
|
(OperandSize::Size8, false) => 0x84,
|
|
(_, false) => 0x85,
|
|
};
|
|
emit_std_reg_reg(sink, prefix, opcode, 1, reg_e, reg_g, rex);
|
|
}
|
|
|
|
RegMemImm::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink).with_allocs(allocs);
|
|
// Whereas here we revert to the "normal" G-E ordering for CMP.
|
|
let opcode = match (*size, is_cmp) {
|
|
(OperandSize::Size8, true) => 0x3A,
|
|
(_, true) => 0x3B,
|
|
(OperandSize::Size8, false) => 0x84,
|
|
(_, false) => 0x85,
|
|
};
|
|
emit_std_reg_mem(sink, prefix, opcode, 1, reg_g, addr, rex, 0);
|
|
}
|
|
|
|
RegMemImm::Imm { simm32 } => {
|
|
// FIXME JRS 2020Feb11: there are shorter encodings for
|
|
// cmp $imm, rax/eax/ax/al.
|
|
let use_imm8 = is_cmp && low8_will_sign_extend_to_32(simm32);
|
|
|
|
// And also here we use the "normal" G-E ordering.
|
|
let opcode = if is_cmp {
|
|
if *size == OperandSize::Size8 {
|
|
0x80
|
|
} else if use_imm8 {
|
|
0x83
|
|
} else {
|
|
0x81
|
|
}
|
|
} else {
|
|
if *size == OperandSize::Size8 {
|
|
0xF6
|
|
} else {
|
|
0xF7
|
|
}
|
|
};
|
|
let subopcode = if is_cmp { 7 } else { 0 };
|
|
|
|
let enc_g = int_reg_enc(reg_g);
|
|
emit_std_enc_enc(sink, prefix, opcode, 1, subopcode, enc_g, rex);
|
|
emit_simm(sink, if use_imm8 { 1 } else { size.to_bytes() }, simm32);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::Setcc { cc, dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let opcode = 0x0f90 + cc.get_enc() as u32;
|
|
let mut rex_flags = RexFlags::clear_w();
|
|
rex_flags.always_emit();
|
|
emit_std_enc_enc(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
opcode,
|
|
2,
|
|
0,
|
|
reg_enc(dst),
|
|
rex_flags,
|
|
);
|
|
}
|
|
|
|
Inst::Bswap { size, src, dst } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(src, dst);
|
|
let enc_reg = int_reg_enc(dst);
|
|
|
|
// BSWAP reg32 is (REX.W==0) 0F C8
|
|
// BSWAP reg64 is (REX.W==1) 0F C8
|
|
let rex_flags = RexFlags::from(*size);
|
|
rex_flags.emit_one_op(sink, enc_reg);
|
|
|
|
sink.put1(0x0F);
|
|
sink.put1(0xC8 | (enc_reg & 7));
|
|
}
|
|
|
|
Inst::Cmove {
|
|
size,
|
|
cc,
|
|
consequent,
|
|
alternative,
|
|
dst,
|
|
} => {
|
|
let alternative = allocs.next(alternative.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(alternative, dst);
|
|
let rex_flags = RexFlags::from(*size);
|
|
let prefix = match size {
|
|
OperandSize::Size16 => LegacyPrefixes::_66,
|
|
OperandSize::Size32 => LegacyPrefixes::None,
|
|
OperandSize::Size64 => LegacyPrefixes::None,
|
|
_ => unreachable!("invalid size spec for cmove"),
|
|
};
|
|
let opcode = 0x0F40 + cc.get_enc() as u32;
|
|
match consequent.clone().to_reg_mem() {
|
|
RegMem::Reg { reg } => {
|
|
let reg = allocs.next(reg);
|
|
emit_std_reg_reg(sink, prefix, opcode, 2, dst, reg, rex_flags);
|
|
}
|
|
RegMem::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink).with_allocs(allocs);
|
|
emit_std_reg_mem(sink, prefix, opcode, 2, dst, addr, rex_flags, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::XmmCmove {
|
|
ty,
|
|
cc,
|
|
consequent,
|
|
alternative,
|
|
dst,
|
|
} => {
|
|
let alternative = allocs.next(alternative.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(alternative, dst);
|
|
let consequent = consequent.clone().to_reg_mem().with_allocs(allocs);
|
|
|
|
// Lowering of the Select IR opcode when the input is an fcmp relies on the fact that
|
|
// this doesn't clobber flags. Make sure to not do so here.
|
|
let next = sink.get_label();
|
|
|
|
// Jump if cc is *not* set.
|
|
one_way_jmp(sink, cc.invert(), next);
|
|
|
|
let op = match *ty {
|
|
types::F64 => SseOpcode::Movsd,
|
|
types::F32 => SseOpcode::Movsd,
|
|
types::F32X4 => SseOpcode::Movaps,
|
|
types::F64X2 => SseOpcode::Movapd,
|
|
ty => {
|
|
debug_assert!(ty.is_vector() && ty.bytes() == 16);
|
|
SseOpcode::Movdqa
|
|
}
|
|
};
|
|
let inst = Inst::xmm_unary_rm_r(op, consequent, Writable::from_reg(dst));
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
sink.bind_label(next, &mut state.ctrl_plane);
|
|
}
|
|
|
|
Inst::Push64 { src } => {
|
|
let src = src.clone().to_reg_mem_imm().with_allocs(allocs);
|
|
|
|
match src {
|
|
RegMemImm::Reg { reg } => {
|
|
let enc_reg = int_reg_enc(reg);
|
|
let rex = 0x40 | ((enc_reg >> 3) & 1);
|
|
if rex != 0x40 {
|
|
sink.put1(rex);
|
|
}
|
|
sink.put1(0x50 | (enc_reg & 7));
|
|
}
|
|
|
|
RegMemImm::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink);
|
|
emit_std_enc_mem(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
0xFF,
|
|
1,
|
|
6, /*subopcode*/
|
|
addr,
|
|
RexFlags::clear_w(),
|
|
0,
|
|
);
|
|
}
|
|
|
|
RegMemImm::Imm { simm32 } => {
|
|
if low8_will_sign_extend_to_64(simm32) {
|
|
sink.put1(0x6A);
|
|
sink.put1(simm32 as u8);
|
|
} else {
|
|
sink.put1(0x68);
|
|
sink.put4(simm32);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::Pop64 { dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let enc_dst = int_reg_enc(dst);
|
|
if enc_dst >= 8 {
|
|
// 0x41 == REX.{W=0, B=1}. It seems that REX.W is irrelevant here.
|
|
sink.put1(0x41);
|
|
}
|
|
sink.put1(0x58 + (enc_dst & 7));
|
|
}
|
|
|
|
Inst::StackProbeLoop {
|
|
tmp,
|
|
frame_size,
|
|
guard_size,
|
|
} => {
|
|
assert!(info.flags.enable_probestack());
|
|
assert!(guard_size.is_power_of_two());
|
|
|
|
let tmp = allocs.next_writable(*tmp);
|
|
|
|
// Number of probes that we need to perform
|
|
let probe_count = align_to(*frame_size, *guard_size) / guard_size;
|
|
|
|
// The inline stack probe loop has 3 phases:
|
|
//
|
|
// We generate the "guard area" register which is essentially the frame_size aligned to
|
|
// guard_size. We copy the stack pointer and subtract the guard area from it. This
|
|
// gets us a register that we can use to compare when looping.
|
|
//
|
|
// After that we emit the loop. Essentially we just adjust the stack pointer one guard_size'd
|
|
// distance at a time and then touch the stack by writing anything to it. We use the previously
|
|
// created "guard area" register to know when to stop looping.
|
|
//
|
|
// When we have touched all the pages that we need, we have to restore the stack pointer
|
|
// to where it was before.
|
|
//
|
|
// Generate the following code:
|
|
// mov tmp_reg, rsp
|
|
// sub tmp_reg, guard_size * probe_count
|
|
// .loop_start:
|
|
// sub rsp, guard_size
|
|
// mov [rsp], rsp
|
|
// cmp rsp, tmp_reg
|
|
// jne .loop_start
|
|
// add rsp, guard_size * probe_count
|
|
|
|
// Create the guard bound register
|
|
// mov tmp_reg, rsp
|
|
let inst = Inst::gen_move(tmp, regs::rsp(), types::I64);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// sub tmp_reg, GUARD_SIZE * probe_count
|
|
let inst = Inst::alu_rmi_r(
|
|
OperandSize::Size64,
|
|
AluRmiROpcode::Sub,
|
|
RegMemImm::imm(guard_size * probe_count),
|
|
tmp,
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// Emit the main loop!
|
|
let loop_start = sink.get_label();
|
|
sink.bind_label(loop_start, &mut state.ctrl_plane);
|
|
|
|
// sub rsp, GUARD_SIZE
|
|
let inst = Inst::alu_rmi_r(
|
|
OperandSize::Size64,
|
|
AluRmiROpcode::Sub,
|
|
RegMemImm::imm(*guard_size),
|
|
Writable::from_reg(regs::rsp()),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// TODO: `mov [rsp], 0` would be better, but we don't have that instruction
|
|
// Probe the stack! We don't use Inst::gen_store_stack here because we need a predictable
|
|
// instruction size.
|
|
// mov [rsp], rsp
|
|
let inst = Inst::mov_r_m(
|
|
OperandSize::Size32, // Use Size32 since it saves us one byte
|
|
regs::rsp(),
|
|
SyntheticAmode::Real(Amode::imm_reg(0, regs::rsp())),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// Compare and jump if we are not done yet
|
|
// cmp rsp, tmp_reg
|
|
let inst = Inst::cmp_rmi_r(
|
|
OperandSize::Size64,
|
|
RegMemImm::reg(regs::rsp()),
|
|
tmp.to_reg(),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// jne .loop_start
|
|
// TODO: Encoding the JmpIf as a short jump saves us 4 bytes here.
|
|
one_way_jmp(sink, CC::NZ, loop_start);
|
|
|
|
// The regular prologue code is going to emit a `sub` after this, so we need to
|
|
// reset the stack pointer
|
|
//
|
|
// TODO: It would be better if we could avoid the `add` + `sub` that is generated here
|
|
// and in the stack adj portion of the prologue
|
|
//
|
|
// add rsp, GUARD_SIZE * probe_count
|
|
let inst = Inst::alu_rmi_r(
|
|
OperandSize::Size64,
|
|
AluRmiROpcode::Add,
|
|
RegMemImm::imm(guard_size * probe_count),
|
|
Writable::from_reg(regs::rsp()),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
|
|
Inst::CallKnown {
|
|
dest,
|
|
info: call_info,
|
|
..
|
|
} => {
|
|
if let Some(s) = state.take_stack_map() {
|
|
sink.add_stack_map(StackMapExtent::UpcomingBytes(5), s);
|
|
}
|
|
sink.put1(0xE8);
|
|
// The addend adjusts for the difference between the end of the instruction and the
|
|
// beginning of the immediate field.
|
|
emit_reloc(sink, Reloc::X86CallPCRel4, &dest, -4);
|
|
sink.put4(0);
|
|
if call_info.opcode.is_call() {
|
|
sink.add_call_site(call_info.opcode);
|
|
}
|
|
}
|
|
|
|
Inst::CallUnknown {
|
|
dest,
|
|
info: call_info,
|
|
..
|
|
} => {
|
|
let dest = dest.with_allocs(allocs);
|
|
|
|
let start_offset = sink.cur_offset();
|
|
match dest {
|
|
RegMem::Reg { reg } => {
|
|
let reg_enc = int_reg_enc(reg);
|
|
emit_std_enc_enc(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
0xFF,
|
|
1,
|
|
2, /*subopcode*/
|
|
reg_enc,
|
|
RexFlags::clear_w(),
|
|
);
|
|
}
|
|
|
|
RegMem::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink);
|
|
emit_std_enc_mem(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
0xFF,
|
|
1,
|
|
2, /*subopcode*/
|
|
addr,
|
|
RexFlags::clear_w(),
|
|
0,
|
|
);
|
|
}
|
|
}
|
|
if let Some(s) = state.take_stack_map() {
|
|
sink.add_stack_map(StackMapExtent::StartedAtOffset(start_offset), s);
|
|
}
|
|
if call_info.opcode.is_call() {
|
|
sink.add_call_site(call_info.opcode);
|
|
}
|
|
}
|
|
|
|
Inst::Args { .. } => {}
|
|
|
|
Inst::Ret { .. } => sink.put1(0xC3),
|
|
|
|
Inst::JmpKnown { dst } => {
|
|
let br_start = sink.cur_offset();
|
|
let br_disp_off = br_start + 1;
|
|
let br_end = br_start + 5;
|
|
|
|
sink.use_label_at_offset(br_disp_off, *dst, LabelUse::JmpRel32);
|
|
sink.add_uncond_branch(br_start, br_end, *dst);
|
|
|
|
sink.put1(0xE9);
|
|
// Placeholder for the label value.
|
|
sink.put4(0x0);
|
|
}
|
|
|
|
Inst::JmpIf { cc, taken } => {
|
|
let cond_start = sink.cur_offset();
|
|
let cond_disp_off = cond_start + 2;
|
|
|
|
sink.use_label_at_offset(cond_disp_off, *taken, LabelUse::JmpRel32);
|
|
// Since this is not a terminator, don't enroll in the branch inversion mechanism.
|
|
|
|
sink.put1(0x0F);
|
|
sink.put1(0x80 + cc.get_enc());
|
|
// Placeholder for the label value.
|
|
sink.put4(0x0);
|
|
}
|
|
|
|
Inst::JmpCond {
|
|
cc,
|
|
taken,
|
|
not_taken,
|
|
} => {
|
|
// If taken.
|
|
let cond_start = sink.cur_offset();
|
|
let cond_disp_off = cond_start + 2;
|
|
let cond_end = cond_start + 6;
|
|
|
|
sink.use_label_at_offset(cond_disp_off, *taken, LabelUse::JmpRel32);
|
|
let inverted: [u8; 6] = [0x0F, 0x80 + (cc.invert().get_enc()), 0x00, 0x00, 0x00, 0x00];
|
|
sink.add_cond_branch(cond_start, cond_end, *taken, &inverted[..]);
|
|
|
|
sink.put1(0x0F);
|
|
sink.put1(0x80 + cc.get_enc());
|
|
// Placeholder for the label value.
|
|
sink.put4(0x0);
|
|
|
|
// If not taken.
|
|
let uncond_start = sink.cur_offset();
|
|
let uncond_disp_off = uncond_start + 1;
|
|
let uncond_end = uncond_start + 5;
|
|
|
|
sink.use_label_at_offset(uncond_disp_off, *not_taken, LabelUse::JmpRel32);
|
|
sink.add_uncond_branch(uncond_start, uncond_end, *not_taken);
|
|
|
|
sink.put1(0xE9);
|
|
// Placeholder for the label value.
|
|
sink.put4(0x0);
|
|
}
|
|
|
|
Inst::JmpUnknown { target } => {
|
|
let target = target.with_allocs(allocs);
|
|
|
|
match target {
|
|
RegMem::Reg { reg } => {
|
|
let reg_enc = int_reg_enc(reg);
|
|
emit_std_enc_enc(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
0xFF,
|
|
1,
|
|
4, /*subopcode*/
|
|
reg_enc,
|
|
RexFlags::clear_w(),
|
|
);
|
|
}
|
|
|
|
RegMem::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink);
|
|
emit_std_enc_mem(
|
|
sink,
|
|
LegacyPrefixes::None,
|
|
0xFF,
|
|
1,
|
|
4, /*subopcode*/
|
|
addr,
|
|
RexFlags::clear_w(),
|
|
0,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::JmpTableSeq {
|
|
idx,
|
|
tmp1,
|
|
tmp2,
|
|
ref targets,
|
|
default_target,
|
|
..
|
|
} => {
|
|
let idx = allocs.next(*idx);
|
|
let tmp1 = Writable::from_reg(allocs.next(tmp1.to_reg()));
|
|
let tmp2 = Writable::from_reg(allocs.next(tmp2.to_reg()));
|
|
|
|
// This sequence is *one* instruction in the vcode, and is expanded only here at
|
|
// emission time, because we cannot allow the regalloc to insert spills/reloads in
|
|
// the middle; we depend on hardcoded PC-rel addressing below.
|
|
//
|
|
// We don't have to worry about emitting islands, because the only label-use type has a
|
|
// maximum range of 2 GB. If we later consider using shorter-range label references,
|
|
// this will need to be revisited.
|
|
|
|
// We generate the following sequence. Note that the only read of %idx is before the
|
|
// write to %tmp2, so regalloc may use the same register for both; fix x64/inst/mod.rs
|
|
// if you change this.
|
|
// lea start_of_jump_table_offset(%rip), %tmp1
|
|
// movslq [%tmp1, %idx, 4], %tmp2 ;; shift of 2, viz. multiply index by 4
|
|
// addq %tmp2, %tmp1
|
|
// j *%tmp1
|
|
// $start_of_jump_table:
|
|
// -- jump table entries
|
|
|
|
// Load base address of jump table.
|
|
let start_of_jumptable = sink.get_label();
|
|
let inst = Inst::lea(Amode::rip_relative(start_of_jumptable), tmp1);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// Load value out of the jump table. It's a relative offset to the target block, so it
|
|
// might be negative; use a sign-extension.
|
|
let inst = Inst::movsx_rm_r(
|
|
ExtMode::LQ,
|
|
RegMem::mem(Amode::imm_reg_reg_shift(
|
|
0,
|
|
Gpr::new(tmp1.to_reg()).unwrap(),
|
|
Gpr::new(idx).unwrap(),
|
|
2,
|
|
)),
|
|
tmp2,
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// Add base of jump table to jump-table-sourced block offset.
|
|
let inst = Inst::alu_rmi_r(
|
|
OperandSize::Size64,
|
|
AluRmiROpcode::Add,
|
|
RegMemImm::reg(tmp2.to_reg()),
|
|
tmp1,
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// Branch to computed address.
|
|
let inst = Inst::jmp_unknown(RegMem::reg(tmp1.to_reg()));
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// Emit jump table (table of 32-bit offsets).
|
|
sink.bind_label(start_of_jumptable, &mut state.ctrl_plane);
|
|
let jt_off = sink.cur_offset();
|
|
for &target in targets.iter().chain(std::iter::once(default_target)) {
|
|
let word_off = sink.cur_offset();
|
|
// off_into_table is an addend here embedded in the label to be later patched at
|
|
// the end of codegen. The offset is initially relative to this jump table entry;
|
|
// with the extra addend, it'll be relative to the jump table's start, after
|
|
// patching.
|
|
let off_into_table = word_off - jt_off;
|
|
sink.use_label_at_offset(word_off, target, LabelUse::PCRel32);
|
|
sink.put4(off_into_table);
|
|
}
|
|
}
|
|
|
|
Inst::TrapIf { cc, trap_code } => {
|
|
let trap_label = sink.defer_trap(*trap_code, state.take_stack_map());
|
|
one_way_jmp(sink, *cc, trap_label);
|
|
}
|
|
|
|
Inst::TrapIfAnd {
|
|
cc1,
|
|
cc2,
|
|
trap_code,
|
|
} => {
|
|
let trap_label = sink.defer_trap(*trap_code, state.take_stack_map());
|
|
let else_label = sink.get_label();
|
|
|
|
// Jump to the end if the first condition isn't true, and then if
|
|
// the second condition is true go to the trap.
|
|
one_way_jmp(sink, cc1.invert(), else_label);
|
|
one_way_jmp(sink, *cc2, trap_label);
|
|
|
|
sink.bind_label(else_label, &mut state.ctrl_plane);
|
|
}
|
|
|
|
Inst::TrapIfOr {
|
|
cc1,
|
|
cc2,
|
|
trap_code,
|
|
} => {
|
|
let trap_label = sink.defer_trap(*trap_code, state.take_stack_map());
|
|
|
|
// Emit two jumps to the same trap if either condition code is true.
|
|
one_way_jmp(sink, *cc1, trap_label);
|
|
one_way_jmp(sink, *cc2, trap_label);
|
|
}
|
|
|
|
Inst::XmmUnaryRmR { op, src, dst } => {
|
|
emit(
|
|
&Inst::XmmUnaryRmRUnaligned {
|
|
op: *op,
|
|
src: XmmMem::new(src.clone().into()).unwrap(),
|
|
dst: *dst,
|
|
},
|
|
allocs,
|
|
sink,
|
|
info,
|
|
state,
|
|
);
|
|
}
|
|
|
|
Inst::XmmUnaryRmRUnaligned {
|
|
op,
|
|
src: src_e,
|
|
dst: reg_g,
|
|
} => {
|
|
let reg_g = allocs.next(reg_g.to_reg().to_reg());
|
|
let src_e = src_e.clone().to_reg_mem().with_allocs(allocs);
|
|
|
|
let rex = RexFlags::clear_w();
|
|
|
|
let (prefix, opcode, num_opcodes) = match op {
|
|
SseOpcode::Cvtdq2pd => (LegacyPrefixes::_F3, 0x0FE6, 2),
|
|
SseOpcode::Cvtpd2ps => (LegacyPrefixes::_66, 0x0F5A, 2),
|
|
SseOpcode::Cvtps2pd => (LegacyPrefixes::None, 0x0F5A, 2),
|
|
SseOpcode::Cvtdq2ps => (LegacyPrefixes::None, 0x0F5B, 2),
|
|
SseOpcode::Cvtss2sd => (LegacyPrefixes::_F3, 0x0F5A, 2),
|
|
SseOpcode::Cvtsd2ss => (LegacyPrefixes::_F2, 0x0F5A, 2),
|
|
SseOpcode::Cvttpd2dq => (LegacyPrefixes::_66, 0x0FE6, 2),
|
|
SseOpcode::Cvttps2dq => (LegacyPrefixes::_F3, 0x0F5B, 2),
|
|
SseOpcode::Movaps => (LegacyPrefixes::None, 0x0F28, 2),
|
|
SseOpcode::Movapd => (LegacyPrefixes::_66, 0x0F28, 2),
|
|
SseOpcode::Movdqa => (LegacyPrefixes::_66, 0x0F6F, 2),
|
|
SseOpcode::Movdqu => (LegacyPrefixes::_F3, 0x0F6F, 2),
|
|
SseOpcode::Movsd => (LegacyPrefixes::_F2, 0x0F10, 2),
|
|
SseOpcode::Movss => (LegacyPrefixes::_F3, 0x0F10, 2),
|
|
SseOpcode::Movups => (LegacyPrefixes::None, 0x0F10, 2),
|
|
SseOpcode::Movupd => (LegacyPrefixes::_66, 0x0F10, 2),
|
|
SseOpcode::Pabsb => (LegacyPrefixes::_66, 0x0F381C, 3),
|
|
SseOpcode::Pabsw => (LegacyPrefixes::_66, 0x0F381D, 3),
|
|
SseOpcode::Pabsd => (LegacyPrefixes::_66, 0x0F381E, 3),
|
|
SseOpcode::Pmovsxbd => (LegacyPrefixes::_66, 0x0F3821, 3),
|
|
SseOpcode::Pmovsxbw => (LegacyPrefixes::_66, 0x0F3820, 3),
|
|
SseOpcode::Pmovsxbq => (LegacyPrefixes::_66, 0x0F3822, 3),
|
|
SseOpcode::Pmovsxwd => (LegacyPrefixes::_66, 0x0F3823, 3),
|
|
SseOpcode::Pmovsxwq => (LegacyPrefixes::_66, 0x0F3824, 3),
|
|
SseOpcode::Pmovsxdq => (LegacyPrefixes::_66, 0x0F3825, 3),
|
|
SseOpcode::Pmovzxbd => (LegacyPrefixes::_66, 0x0F3831, 3),
|
|
SseOpcode::Pmovzxbw => (LegacyPrefixes::_66, 0x0F3830, 3),
|
|
SseOpcode::Pmovzxbq => (LegacyPrefixes::_66, 0x0F3832, 3),
|
|
SseOpcode::Pmovzxwd => (LegacyPrefixes::_66, 0x0F3833, 3),
|
|
SseOpcode::Pmovzxwq => (LegacyPrefixes::_66, 0x0F3834, 3),
|
|
SseOpcode::Pmovzxdq => (LegacyPrefixes::_66, 0x0F3835, 3),
|
|
SseOpcode::Sqrtps => (LegacyPrefixes::None, 0x0F51, 2),
|
|
SseOpcode::Sqrtpd => (LegacyPrefixes::_66, 0x0F51, 2),
|
|
SseOpcode::Sqrtss => (LegacyPrefixes::_F3, 0x0F51, 2),
|
|
SseOpcode::Sqrtsd => (LegacyPrefixes::_F2, 0x0F51, 2),
|
|
SseOpcode::Movddup => (LegacyPrefixes::_F2, 0x0F12, 2),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
|
|
match src_e {
|
|
RegMem::Reg { reg: reg_e } => {
|
|
emit_std_reg_reg(sink, prefix, opcode, num_opcodes, reg_g, reg_e, rex);
|
|
}
|
|
RegMem::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink);
|
|
emit_std_reg_mem(sink, prefix, opcode, num_opcodes, reg_g, addr, rex, 0);
|
|
}
|
|
};
|
|
}
|
|
|
|
Inst::XmmUnaryRmRImm { op, src, dst, imm } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src = src.clone().to_reg_mem().with_allocs(allocs);
|
|
let rex = RexFlags::clear_w();
|
|
|
|
let (prefix, opcode, len) = match op {
|
|
SseOpcode::Roundps => (LegacyPrefixes::_66, 0x0F3A08, 3),
|
|
SseOpcode::Roundss => (LegacyPrefixes::_66, 0x0F3A0A, 3),
|
|
SseOpcode::Roundpd => (LegacyPrefixes::_66, 0x0F3A09, 3),
|
|
SseOpcode::Roundsd => (LegacyPrefixes::_66, 0x0F3A0B, 3),
|
|
SseOpcode::Pshufd => (LegacyPrefixes::_66, 0x0F70, 2),
|
|
SseOpcode::Pshuflw => (LegacyPrefixes::_F2, 0x0F70, 2),
|
|
SseOpcode::Pshufhw => (LegacyPrefixes::_F3, 0x0F70, 2),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
match src {
|
|
RegMem::Reg { reg } => {
|
|
emit_std_reg_reg(sink, prefix, opcode, len, dst, reg, rex);
|
|
}
|
|
RegMem::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink);
|
|
// N.B.: bytes_at_end == 1, because of the `imm` byte below.
|
|
emit_std_reg_mem(sink, prefix, opcode, len, dst, addr, rex, 1);
|
|
}
|
|
}
|
|
sink.put1(*imm);
|
|
}
|
|
|
|
Inst::XmmUnaryRmREvex { op, src, dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src = src.clone().to_reg_mem().with_allocs(allocs);
|
|
|
|
let (prefix, map, w, opcode) = match op {
|
|
Avx512Opcode::Vcvtudq2ps => (LegacyPrefixes::_F2, OpcodeMap::_0F, false, 0x7a),
|
|
Avx512Opcode::Vpabsq => (LegacyPrefixes::_66, OpcodeMap::_0F38, true, 0x1f),
|
|
Avx512Opcode::Vpopcntb => (LegacyPrefixes::_66, OpcodeMap::_0F38, false, 0x54),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
match src {
|
|
RegMem::Reg { reg: src } => EvexInstruction::new()
|
|
.length(EvexVectorLength::V128)
|
|
.prefix(prefix)
|
|
.map(map)
|
|
.w(w)
|
|
.opcode(opcode)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc())
|
|
.rm(src.to_real_reg().unwrap().hw_enc())
|
|
.encode(sink),
|
|
_ => todo!(),
|
|
};
|
|
}
|
|
|
|
Inst::XmmRmR {
|
|
op,
|
|
src1,
|
|
src2,
|
|
dst,
|
|
} => emit(
|
|
&Inst::XmmRmRUnaligned {
|
|
op: *op,
|
|
dst: *dst,
|
|
src1: *src1,
|
|
src2: XmmMem::new(src2.clone().to_reg_mem()).unwrap(),
|
|
},
|
|
allocs,
|
|
sink,
|
|
info,
|
|
state,
|
|
),
|
|
|
|
Inst::XmmRmRUnaligned {
|
|
op,
|
|
src1,
|
|
src2: src_e,
|
|
dst: reg_g,
|
|
} => {
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let reg_g = allocs.next(reg_g.to_reg().to_reg());
|
|
let src_e = src_e.clone().to_reg_mem().with_allocs(allocs);
|
|
debug_assert_eq!(src1, reg_g);
|
|
|
|
let rex = RexFlags::clear_w();
|
|
let (prefix, opcode, length) = match op {
|
|
SseOpcode::Addps => (LegacyPrefixes::None, 0x0F58, 2),
|
|
SseOpcode::Addpd => (LegacyPrefixes::_66, 0x0F58, 2),
|
|
SseOpcode::Addss => (LegacyPrefixes::_F3, 0x0F58, 2),
|
|
SseOpcode::Addsd => (LegacyPrefixes::_F2, 0x0F58, 2),
|
|
SseOpcode::Andps => (LegacyPrefixes::None, 0x0F54, 2),
|
|
SseOpcode::Andpd => (LegacyPrefixes::_66, 0x0F54, 2),
|
|
SseOpcode::Andnps => (LegacyPrefixes::None, 0x0F55, 2),
|
|
SseOpcode::Andnpd => (LegacyPrefixes::_66, 0x0F55, 2),
|
|
SseOpcode::Divps => (LegacyPrefixes::None, 0x0F5E, 2),
|
|
SseOpcode::Divpd => (LegacyPrefixes::_66, 0x0F5E, 2),
|
|
SseOpcode::Divss => (LegacyPrefixes::_F3, 0x0F5E, 2),
|
|
SseOpcode::Divsd => (LegacyPrefixes::_F2, 0x0F5E, 2),
|
|
SseOpcode::Maxps => (LegacyPrefixes::None, 0x0F5F, 2),
|
|
SseOpcode::Maxpd => (LegacyPrefixes::_66, 0x0F5F, 2),
|
|
SseOpcode::Maxss => (LegacyPrefixes::_F3, 0x0F5F, 2),
|
|
SseOpcode::Maxsd => (LegacyPrefixes::_F2, 0x0F5F, 2),
|
|
SseOpcode::Minps => (LegacyPrefixes::None, 0x0F5D, 2),
|
|
SseOpcode::Minpd => (LegacyPrefixes::_66, 0x0F5D, 2),
|
|
SseOpcode::Minss => (LegacyPrefixes::_F3, 0x0F5D, 2),
|
|
SseOpcode::Minsd => (LegacyPrefixes::_F2, 0x0F5D, 2),
|
|
SseOpcode::Movlhps => (LegacyPrefixes::None, 0x0F16, 2),
|
|
SseOpcode::Movsd => (LegacyPrefixes::_F2, 0x0F10, 2),
|
|
SseOpcode::Mulps => (LegacyPrefixes::None, 0x0F59, 2),
|
|
SseOpcode::Mulpd => (LegacyPrefixes::_66, 0x0F59, 2),
|
|
SseOpcode::Mulss => (LegacyPrefixes::_F3, 0x0F59, 2),
|
|
SseOpcode::Mulsd => (LegacyPrefixes::_F2, 0x0F59, 2),
|
|
SseOpcode::Orpd => (LegacyPrefixes::_66, 0x0F56, 2),
|
|
SseOpcode::Orps => (LegacyPrefixes::None, 0x0F56, 2),
|
|
SseOpcode::Packssdw => (LegacyPrefixes::_66, 0x0F6B, 2),
|
|
SseOpcode::Packsswb => (LegacyPrefixes::_66, 0x0F63, 2),
|
|
SseOpcode::Packusdw => (LegacyPrefixes::_66, 0x0F382B, 3),
|
|
SseOpcode::Packuswb => (LegacyPrefixes::_66, 0x0F67, 2),
|
|
SseOpcode::Paddb => (LegacyPrefixes::_66, 0x0FFC, 2),
|
|
SseOpcode::Paddd => (LegacyPrefixes::_66, 0x0FFE, 2),
|
|
SseOpcode::Paddq => (LegacyPrefixes::_66, 0x0FD4, 2),
|
|
SseOpcode::Paddw => (LegacyPrefixes::_66, 0x0FFD, 2),
|
|
SseOpcode::Paddsb => (LegacyPrefixes::_66, 0x0FEC, 2),
|
|
SseOpcode::Paddsw => (LegacyPrefixes::_66, 0x0FED, 2),
|
|
SseOpcode::Paddusb => (LegacyPrefixes::_66, 0x0FDC, 2),
|
|
SseOpcode::Paddusw => (LegacyPrefixes::_66, 0x0FDD, 2),
|
|
SseOpcode::Pmaddubsw => (LegacyPrefixes::_66, 0x0F3804, 3),
|
|
SseOpcode::Pand => (LegacyPrefixes::_66, 0x0FDB, 2),
|
|
SseOpcode::Pandn => (LegacyPrefixes::_66, 0x0FDF, 2),
|
|
SseOpcode::Pavgb => (LegacyPrefixes::_66, 0x0FE0, 2),
|
|
SseOpcode::Pavgw => (LegacyPrefixes::_66, 0x0FE3, 2),
|
|
SseOpcode::Pcmpeqb => (LegacyPrefixes::_66, 0x0F74, 2),
|
|
SseOpcode::Pcmpeqw => (LegacyPrefixes::_66, 0x0F75, 2),
|
|
SseOpcode::Pcmpeqd => (LegacyPrefixes::_66, 0x0F76, 2),
|
|
SseOpcode::Pcmpeqq => (LegacyPrefixes::_66, 0x0F3829, 3),
|
|
SseOpcode::Pcmpgtb => (LegacyPrefixes::_66, 0x0F64, 2),
|
|
SseOpcode::Pcmpgtw => (LegacyPrefixes::_66, 0x0F65, 2),
|
|
SseOpcode::Pcmpgtd => (LegacyPrefixes::_66, 0x0F66, 2),
|
|
SseOpcode::Pcmpgtq => (LegacyPrefixes::_66, 0x0F3837, 3),
|
|
SseOpcode::Pmaddwd => (LegacyPrefixes::_66, 0x0FF5, 2),
|
|
SseOpcode::Pmaxsb => (LegacyPrefixes::_66, 0x0F383C, 3),
|
|
SseOpcode::Pmaxsw => (LegacyPrefixes::_66, 0x0FEE, 2),
|
|
SseOpcode::Pmaxsd => (LegacyPrefixes::_66, 0x0F383D, 3),
|
|
SseOpcode::Pmaxub => (LegacyPrefixes::_66, 0x0FDE, 2),
|
|
SseOpcode::Pmaxuw => (LegacyPrefixes::_66, 0x0F383E, 3),
|
|
SseOpcode::Pmaxud => (LegacyPrefixes::_66, 0x0F383F, 3),
|
|
SseOpcode::Pminsb => (LegacyPrefixes::_66, 0x0F3838, 3),
|
|
SseOpcode::Pminsw => (LegacyPrefixes::_66, 0x0FEA, 2),
|
|
SseOpcode::Pminsd => (LegacyPrefixes::_66, 0x0F3839, 3),
|
|
SseOpcode::Pminub => (LegacyPrefixes::_66, 0x0FDA, 2),
|
|
SseOpcode::Pminuw => (LegacyPrefixes::_66, 0x0F383A, 3),
|
|
SseOpcode::Pminud => (LegacyPrefixes::_66, 0x0F383B, 3),
|
|
SseOpcode::Pmuldq => (LegacyPrefixes::_66, 0x0F3828, 3),
|
|
SseOpcode::Pmulhw => (LegacyPrefixes::_66, 0x0FE5, 2),
|
|
SseOpcode::Pmulhrsw => (LegacyPrefixes::_66, 0x0F380B, 3),
|
|
SseOpcode::Pmulhuw => (LegacyPrefixes::_66, 0x0FE4, 2),
|
|
SseOpcode::Pmulld => (LegacyPrefixes::_66, 0x0F3840, 3),
|
|
SseOpcode::Pmullw => (LegacyPrefixes::_66, 0x0FD5, 2),
|
|
SseOpcode::Pmuludq => (LegacyPrefixes::_66, 0x0FF4, 2),
|
|
SseOpcode::Por => (LegacyPrefixes::_66, 0x0FEB, 2),
|
|
SseOpcode::Pshufb => (LegacyPrefixes::_66, 0x0F3800, 3),
|
|
SseOpcode::Psubb => (LegacyPrefixes::_66, 0x0FF8, 2),
|
|
SseOpcode::Psubd => (LegacyPrefixes::_66, 0x0FFA, 2),
|
|
SseOpcode::Psubq => (LegacyPrefixes::_66, 0x0FFB, 2),
|
|
SseOpcode::Psubw => (LegacyPrefixes::_66, 0x0FF9, 2),
|
|
SseOpcode::Psubsb => (LegacyPrefixes::_66, 0x0FE8, 2),
|
|
SseOpcode::Psubsw => (LegacyPrefixes::_66, 0x0FE9, 2),
|
|
SseOpcode::Psubusb => (LegacyPrefixes::_66, 0x0FD8, 2),
|
|
SseOpcode::Psubusw => (LegacyPrefixes::_66, 0x0FD9, 2),
|
|
SseOpcode::Punpckhbw => (LegacyPrefixes::_66, 0x0F68, 2),
|
|
SseOpcode::Punpckhwd => (LegacyPrefixes::_66, 0x0F69, 2),
|
|
SseOpcode::Punpcklbw => (LegacyPrefixes::_66, 0x0F60, 2),
|
|
SseOpcode::Punpcklwd => (LegacyPrefixes::_66, 0x0F61, 2),
|
|
SseOpcode::Punpckldq => (LegacyPrefixes::_66, 0x0F62, 2),
|
|
SseOpcode::Punpcklqdq => (LegacyPrefixes::_66, 0x0F6C, 2),
|
|
SseOpcode::Punpckhdq => (LegacyPrefixes::_66, 0x0F6A, 2),
|
|
SseOpcode::Punpckhqdq => (LegacyPrefixes::_66, 0x0F6D, 2),
|
|
SseOpcode::Pxor => (LegacyPrefixes::_66, 0x0FEF, 2),
|
|
SseOpcode::Subps => (LegacyPrefixes::None, 0x0F5C, 2),
|
|
SseOpcode::Subpd => (LegacyPrefixes::_66, 0x0F5C, 2),
|
|
SseOpcode::Subss => (LegacyPrefixes::_F3, 0x0F5C, 2),
|
|
SseOpcode::Subsd => (LegacyPrefixes::_F2, 0x0F5C, 2),
|
|
SseOpcode::Unpcklps => (LegacyPrefixes::None, 0x0F14, 2),
|
|
SseOpcode::Unpckhps => (LegacyPrefixes::None, 0x0F15, 2),
|
|
SseOpcode::Xorps => (LegacyPrefixes::None, 0x0F57, 2),
|
|
SseOpcode::Xorpd => (LegacyPrefixes::_66, 0x0F57, 2),
|
|
SseOpcode::Phaddw => (LegacyPrefixes::_66, 0x0F3801, 3),
|
|
SseOpcode::Phaddd => (LegacyPrefixes::_66, 0x0F3802, 3),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
|
|
match src_e {
|
|
RegMem::Reg { reg: reg_e } => {
|
|
emit_std_reg_reg(sink, prefix, opcode, length, reg_g, reg_e, rex);
|
|
}
|
|
RegMem::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink);
|
|
emit_std_reg_mem(sink, prefix, opcode, length, reg_g, addr, rex, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::XmmRmRBlend {
|
|
op,
|
|
src1,
|
|
src2,
|
|
dst,
|
|
mask,
|
|
} => {
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let mask = allocs.next(mask.to_reg());
|
|
debug_assert_eq!(mask, regs::xmm0());
|
|
let reg_g = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(src1, reg_g);
|
|
let src_e = src2.clone().to_reg_mem().with_allocs(allocs);
|
|
|
|
let rex = RexFlags::clear_w();
|
|
let (prefix, opcode, length) = match op {
|
|
SseOpcode::Blendvps => (LegacyPrefixes::_66, 0x0F3814, 3),
|
|
SseOpcode::Blendvpd => (LegacyPrefixes::_66, 0x0F3815, 3),
|
|
SseOpcode::Pblendvb => (LegacyPrefixes::_66, 0x0F3810, 3),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
|
|
match src_e {
|
|
RegMem::Reg { reg: reg_e } => {
|
|
emit_std_reg_reg(sink, prefix, opcode, length, reg_g, reg_e, rex);
|
|
}
|
|
RegMem::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink);
|
|
emit_std_reg_mem(sink, prefix, opcode, length, reg_g, addr, rex, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::XmmRmiRVex {
|
|
op,
|
|
src1,
|
|
src2,
|
|
dst,
|
|
} => {
|
|
use LegacyPrefixes as LP;
|
|
use OpcodeMap as OM;
|
|
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let src2 = src2.clone().to_reg_mem_imm().with_allocs(allocs);
|
|
|
|
let src2 = match src2 {
|
|
// For opcodes where one of the operands is an immediate the
|
|
// encoding is a bit different, notably the usage of
|
|
// `opcode_ext`, so handle that specially here.
|
|
RegMemImm::Imm { simm32 } => {
|
|
let (opcode, opcode_ext, prefix) = match op {
|
|
AvxOpcode::Vpsrlw => (0x71, 2, LegacyPrefixes::_66),
|
|
AvxOpcode::Vpsrld => (0x72, 2, LegacyPrefixes::_66),
|
|
AvxOpcode::Vpsrlq => (0x73, 2, LegacyPrefixes::_66),
|
|
AvxOpcode::Vpsllw => (0x71, 6, LegacyPrefixes::_66),
|
|
AvxOpcode::Vpslld => (0x72, 6, LegacyPrefixes::_66),
|
|
AvxOpcode::Vpsllq => (0x73, 6, LegacyPrefixes::_66),
|
|
AvxOpcode::Vpsraw => (0x71, 4, LegacyPrefixes::_66),
|
|
AvxOpcode::Vpsrad => (0x72, 4, LegacyPrefixes::_66),
|
|
_ => panic!("unexpected rmi_r_vex opcode with immediate {op:?}"),
|
|
};
|
|
VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.prefix(prefix)
|
|
.map(OpcodeMap::_0F)
|
|
.opcode(opcode)
|
|
.opcode_ext(opcode_ext)
|
|
.vvvv(dst.to_real_reg().unwrap().hw_enc())
|
|
.prefix(LegacyPrefixes::_66)
|
|
.rm(src1.to_real_reg().unwrap().hw_enc())
|
|
.imm(simm32.try_into().unwrap())
|
|
.encode(sink);
|
|
return;
|
|
}
|
|
RegMemImm::Reg { reg } => {
|
|
RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
|
|
}
|
|
RegMemImm::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
|
|
};
|
|
let (prefix, map, opcode) = match op {
|
|
AvxOpcode::Vminps => (LP::None, OM::_0F, 0x5D),
|
|
AvxOpcode::Vminpd => (LP::_66, OM::_0F, 0x5D),
|
|
AvxOpcode::Vmaxps => (LP::None, OM::_0F, 0x5F),
|
|
AvxOpcode::Vmaxpd => (LP::_66, OM::_0F, 0x5F),
|
|
AvxOpcode::Vandnps => (LP::None, OM::_0F, 0x55),
|
|
AvxOpcode::Vandnpd => (LP::_66, OM::_0F, 0x55),
|
|
AvxOpcode::Vpandn => (LP::_66, OM::_0F, 0xDF),
|
|
AvxOpcode::Vpsrlw => (LP::_66, OM::_0F, 0xD1),
|
|
AvxOpcode::Vpsrld => (LP::_66, OM::_0F, 0xD2),
|
|
AvxOpcode::Vpsrlq => (LP::_66, OM::_0F, 0xD3),
|
|
AvxOpcode::Vpaddb => (LP::_66, OM::_0F, 0xFC),
|
|
AvxOpcode::Vpaddw => (LP::_66, OM::_0F, 0xFD),
|
|
AvxOpcode::Vpaddd => (LP::_66, OM::_0F, 0xFE),
|
|
AvxOpcode::Vpaddq => (LP::_66, OM::_0F, 0xD4),
|
|
AvxOpcode::Vpaddsb => (LP::_66, OM::_0F, 0xEC),
|
|
AvxOpcode::Vpaddsw => (LP::_66, OM::_0F, 0xED),
|
|
AvxOpcode::Vpaddusb => (LP::_66, OM::_0F, 0xDC),
|
|
AvxOpcode::Vpaddusw => (LP::_66, OM::_0F, 0xDD),
|
|
AvxOpcode::Vpsubb => (LP::_66, OM::_0F, 0xF8),
|
|
AvxOpcode::Vpsubw => (LP::_66, OM::_0F, 0xF9),
|
|
AvxOpcode::Vpsubd => (LP::_66, OM::_0F, 0xFA),
|
|
AvxOpcode::Vpsubq => (LP::_66, OM::_0F, 0xFB),
|
|
AvxOpcode::Vpsubsb => (LP::_66, OM::_0F, 0xE8),
|
|
AvxOpcode::Vpsubsw => (LP::_66, OM::_0F, 0xE9),
|
|
AvxOpcode::Vpsubusb => (LP::_66, OM::_0F, 0xD8),
|
|
AvxOpcode::Vpsubusw => (LP::_66, OM::_0F, 0xD9),
|
|
AvxOpcode::Vpavgb => (LP::_66, OM::_0F, 0xE0),
|
|
AvxOpcode::Vpavgw => (LP::_66, OM::_0F, 0xE3),
|
|
AvxOpcode::Vpand => (LP::_66, OM::_0F, 0xDB),
|
|
AvxOpcode::Vandps => (LP::None, OM::_0F, 0x54),
|
|
AvxOpcode::Vandpd => (LP::_66, OM::_0F, 0x54),
|
|
AvxOpcode::Vpor => (LP::_66, OM::_0F, 0xEB),
|
|
AvxOpcode::Vorps => (LP::None, OM::_0F, 0x56),
|
|
AvxOpcode::Vorpd => (LP::_66, OM::_0F, 0x56),
|
|
AvxOpcode::Vpxor => (LP::_66, OM::_0F, 0xEF),
|
|
AvxOpcode::Vxorps => (LP::None, OM::_0F, 0x57),
|
|
AvxOpcode::Vxorpd => (LP::_66, OM::_0F, 0x57),
|
|
AvxOpcode::Vpmullw => (LP::_66, OM::_0F, 0xD5),
|
|
AvxOpcode::Vpmulld => (LP::_66, OM::_0F38, 0x40),
|
|
AvxOpcode::Vpmulhw => (LP::_66, OM::_0F, 0xE5),
|
|
AvxOpcode::Vpmulhrsw => (LP::_66, OM::_0F38, 0x0B),
|
|
AvxOpcode::Vpmulhuw => (LP::_66, OM::_0F, 0xE4),
|
|
AvxOpcode::Vpmuldq => (LP::_66, OM::_0F38, 0x28),
|
|
AvxOpcode::Vpmuludq => (LP::_66, OM::_0F, 0xF4),
|
|
AvxOpcode::Vpunpckhwd => (LP::_66, OM::_0F, 0x69),
|
|
AvxOpcode::Vpunpcklwd => (LP::_66, OM::_0F, 0x61),
|
|
AvxOpcode::Vunpcklps => (LP::None, OM::_0F, 0x14),
|
|
AvxOpcode::Vunpckhps => (LP::None, OM::_0F, 0x15),
|
|
AvxOpcode::Vaddps => (LP::None, OM::_0F, 0x58),
|
|
AvxOpcode::Vaddpd => (LP::_66, OM::_0F, 0x58),
|
|
AvxOpcode::Vsubps => (LP::None, OM::_0F, 0x5C),
|
|
AvxOpcode::Vsubpd => (LP::_66, OM::_0F, 0x5C),
|
|
AvxOpcode::Vmulps => (LP::None, OM::_0F, 0x59),
|
|
AvxOpcode::Vmulpd => (LP::_66, OM::_0F, 0x59),
|
|
AvxOpcode::Vdivps => (LP::None, OM::_0F, 0x5E),
|
|
AvxOpcode::Vdivpd => (LP::_66, OM::_0F, 0x5E),
|
|
AvxOpcode::Vpcmpeqb => (LP::_66, OM::_0F, 0x74),
|
|
AvxOpcode::Vpcmpeqw => (LP::_66, OM::_0F, 0x75),
|
|
AvxOpcode::Vpcmpeqd => (LP::_66, OM::_0F, 0x76),
|
|
AvxOpcode::Vpcmpeqq => (LP::_66, OM::_0F38, 0x29),
|
|
AvxOpcode::Vpcmpgtb => (LP::_66, OM::_0F, 0x64),
|
|
AvxOpcode::Vpcmpgtw => (LP::_66, OM::_0F, 0x65),
|
|
AvxOpcode::Vpcmpgtd => (LP::_66, OM::_0F, 0x66),
|
|
AvxOpcode::Vpcmpgtq => (LP::_66, OM::_0F38, 0x37),
|
|
AvxOpcode::Vmovlhps => (LP::None, OM::_0F, 0x16),
|
|
AvxOpcode::Vpminsb => (LP::_66, OM::_0F38, 0x38),
|
|
AvxOpcode::Vpminsw => (LP::_66, OM::_0F, 0xEA),
|
|
AvxOpcode::Vpminsd => (LP::_66, OM::_0F38, 0x39),
|
|
AvxOpcode::Vpmaxsb => (LP::_66, OM::_0F38, 0x3C),
|
|
AvxOpcode::Vpmaxsw => (LP::_66, OM::_0F, 0xEE),
|
|
AvxOpcode::Vpmaxsd => (LP::_66, OM::_0F38, 0x3D),
|
|
AvxOpcode::Vpminub => (LP::_66, OM::_0F, 0xDA),
|
|
AvxOpcode::Vpminuw => (LP::_66, OM::_0F38, 0x3A),
|
|
AvxOpcode::Vpminud => (LP::_66, OM::_0F38, 0x3B),
|
|
AvxOpcode::Vpmaxub => (LP::_66, OM::_0F, 0xDE),
|
|
AvxOpcode::Vpmaxuw => (LP::_66, OM::_0F38, 0x3E),
|
|
AvxOpcode::Vpmaxud => (LP::_66, OM::_0F38, 0x3F),
|
|
AvxOpcode::Vpunpcklbw => (LP::_66, OM::_0F, 0x60),
|
|
AvxOpcode::Vpunpckhbw => (LP::_66, OM::_0F, 0x68),
|
|
AvxOpcode::Vpacksswb => (LP::_66, OM::_0F, 0x63),
|
|
AvxOpcode::Vpackssdw => (LP::_66, OM::_0F, 0x6B),
|
|
AvxOpcode::Vpackuswb => (LP::_66, OM::_0F, 0x67),
|
|
AvxOpcode::Vpackusdw => (LP::_66, OM::_0F38, 0x2B),
|
|
AvxOpcode::Vpmaddwd => (LP::_66, OM::_0F, 0xF5),
|
|
AvxOpcode::Vpmaddubsw => (LP::_66, OM::_0F38, 0x04),
|
|
AvxOpcode::Vpshufb => (LP::_66, OM::_0F38, 0x00),
|
|
AvxOpcode::Vpsllw => (LP::_66, OM::_0F, 0xF1),
|
|
AvxOpcode::Vpslld => (LP::_66, OM::_0F, 0xF2),
|
|
AvxOpcode::Vpsllq => (LP::_66, OM::_0F, 0xF3),
|
|
AvxOpcode::Vpsraw => (LP::_66, OM::_0F, 0xE1),
|
|
AvxOpcode::Vpsrad => (LP::_66, OM::_0F, 0xE2),
|
|
AvxOpcode::Vaddss => (LP::_F3, OM::_0F, 0x58),
|
|
AvxOpcode::Vaddsd => (LP::_F2, OM::_0F, 0x58),
|
|
AvxOpcode::Vmulss => (LP::_F3, OM::_0F, 0x59),
|
|
AvxOpcode::Vmulsd => (LP::_F2, OM::_0F, 0x59),
|
|
AvxOpcode::Vsubss => (LP::_F3, OM::_0F, 0x5C),
|
|
AvxOpcode::Vsubsd => (LP::_F2, OM::_0F, 0x5C),
|
|
AvxOpcode::Vdivss => (LP::_F3, OM::_0F, 0x5E),
|
|
AvxOpcode::Vdivsd => (LP::_F2, OM::_0F, 0x5E),
|
|
AvxOpcode::Vminss => (LP::_F3, OM::_0F, 0x5D),
|
|
AvxOpcode::Vminsd => (LP::_F2, OM::_0F, 0x5D),
|
|
AvxOpcode::Vmaxss => (LP::_F3, OM::_0F, 0x5F),
|
|
AvxOpcode::Vmaxsd => (LP::_F2, OM::_0F, 0x5F),
|
|
AvxOpcode::Vphaddw => (LP::_66, OM::_0F38, 0x01),
|
|
AvxOpcode::Vphaddd => (LP::_66, OM::_0F38, 0x02),
|
|
AvxOpcode::Vpunpckldq => (LP::_66, OM::_0F, 0x62),
|
|
AvxOpcode::Vpunpckhdq => (LP::_66, OM::_0F, 0x6A),
|
|
AvxOpcode::Vpunpcklqdq => (LP::_66, OM::_0F, 0x6C),
|
|
AvxOpcode::Vpunpckhqdq => (LP::_66, OM::_0F, 0x6D),
|
|
AvxOpcode::Vmovsd => (LP::_F2, OM::_0F, 0x10),
|
|
_ => panic!("unexpected rmir vex opcode {op:?}"),
|
|
};
|
|
VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.prefix(prefix)
|
|
.map(map)
|
|
.opcode(opcode)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc())
|
|
.vvvv(src1.to_real_reg().unwrap().hw_enc())
|
|
.rm(src2)
|
|
.encode(sink);
|
|
}
|
|
|
|
Inst::XmmRmRImmVex {
|
|
op,
|
|
src1,
|
|
src2,
|
|
dst,
|
|
imm,
|
|
} => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let src2 = match src2.clone().to_reg_mem().with_allocs(allocs) {
|
|
RegMem::Reg { reg } => {
|
|
RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
|
|
}
|
|
RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
|
|
};
|
|
|
|
let (w, prefix, map, opcode) = match op {
|
|
AvxOpcode::Vcmpps => (false, LegacyPrefixes::None, OpcodeMap::_0F, 0xC2),
|
|
AvxOpcode::Vcmppd => (false, LegacyPrefixes::_66, OpcodeMap::_0F, 0xC2),
|
|
AvxOpcode::Vpalignr => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x0F),
|
|
AvxOpcode::Vinsertps => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x21),
|
|
AvxOpcode::Vshufps => (false, LegacyPrefixes::None, OpcodeMap::_0F, 0xC6),
|
|
AvxOpcode::Vpblendw => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x0E),
|
|
_ => panic!("unexpected rmr_imm_vex opcode {op:?}"),
|
|
};
|
|
|
|
VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.prefix(prefix)
|
|
.map(map)
|
|
.w(w)
|
|
.opcode(opcode)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc())
|
|
.vvvv(src1.to_real_reg().unwrap().hw_enc())
|
|
.rm(src2)
|
|
.imm(*imm)
|
|
.encode(sink);
|
|
}
|
|
|
|
Inst::XmmVexPinsr {
|
|
op,
|
|
src1,
|
|
src2,
|
|
dst,
|
|
imm,
|
|
} => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let src2 = match src2.clone().to_reg_mem().with_allocs(allocs) {
|
|
RegMem::Reg { reg } => {
|
|
RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
|
|
}
|
|
RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
|
|
};
|
|
|
|
let (w, map, opcode) = match op {
|
|
AvxOpcode::Vpinsrb => (false, OpcodeMap::_0F3A, 0x20),
|
|
AvxOpcode::Vpinsrw => (false, OpcodeMap::_0F, 0xC4),
|
|
AvxOpcode::Vpinsrd => (false, OpcodeMap::_0F3A, 0x22),
|
|
AvxOpcode::Vpinsrq => (true, OpcodeMap::_0F3A, 0x22),
|
|
_ => panic!("unexpected vex_pinsr opcode {op:?}"),
|
|
};
|
|
|
|
VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.prefix(LegacyPrefixes::_66)
|
|
.map(map)
|
|
.w(w)
|
|
.opcode(opcode)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc())
|
|
.vvvv(src1.to_real_reg().unwrap().hw_enc())
|
|
.rm(src2)
|
|
.imm(*imm)
|
|
.encode(sink);
|
|
}
|
|
|
|
Inst::XmmRmRVex3 {
|
|
op,
|
|
src1,
|
|
src2,
|
|
src3,
|
|
dst,
|
|
} => {
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(src1, dst);
|
|
let src2 = allocs.next(src2.to_reg());
|
|
let src3 = match src3.clone().to_reg_mem().with_allocs(allocs) {
|
|
RegMem::Reg { reg } => {
|
|
RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
|
|
}
|
|
RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
|
|
};
|
|
|
|
let (w, map, opcode) = match op {
|
|
AvxOpcode::Vfmadd132ss => (false, OpcodeMap::_0F38, 0x99),
|
|
AvxOpcode::Vfmadd213ss => (false, OpcodeMap::_0F38, 0xA9),
|
|
AvxOpcode::Vfnmadd132ss => (false, OpcodeMap::_0F38, 0x9D),
|
|
AvxOpcode::Vfnmadd213ss => (false, OpcodeMap::_0F38, 0xAD),
|
|
AvxOpcode::Vfmadd132sd => (true, OpcodeMap::_0F38, 0x99),
|
|
AvxOpcode::Vfmadd213sd => (true, OpcodeMap::_0F38, 0xA9),
|
|
AvxOpcode::Vfnmadd132sd => (true, OpcodeMap::_0F38, 0x9D),
|
|
AvxOpcode::Vfnmadd213sd => (true, OpcodeMap::_0F38, 0xAD),
|
|
AvxOpcode::Vfmadd132ps => (false, OpcodeMap::_0F38, 0x98),
|
|
AvxOpcode::Vfmadd213ps => (false, OpcodeMap::_0F38, 0xA8),
|
|
AvxOpcode::Vfnmadd132ps => (false, OpcodeMap::_0F38, 0x9C),
|
|
AvxOpcode::Vfnmadd213ps => (false, OpcodeMap::_0F38, 0xAC),
|
|
AvxOpcode::Vfmadd132pd => (true, OpcodeMap::_0F38, 0x98),
|
|
AvxOpcode::Vfmadd213pd => (true, OpcodeMap::_0F38, 0xA8),
|
|
AvxOpcode::Vfnmadd132pd => (true, OpcodeMap::_0F38, 0x9C),
|
|
AvxOpcode::Vfnmadd213pd => (true, OpcodeMap::_0F38, 0xAC),
|
|
AvxOpcode::Vblendvps => (false, OpcodeMap::_0F3A, 0x4A),
|
|
AvxOpcode::Vblendvpd => (false, OpcodeMap::_0F3A, 0x4B),
|
|
AvxOpcode::Vpblendvb => (false, OpcodeMap::_0F3A, 0x4C),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.prefix(LegacyPrefixes::_66)
|
|
.map(map)
|
|
.w(w)
|
|
.opcode(opcode)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc())
|
|
.rm(src3)
|
|
.vvvv(src2.to_real_reg().unwrap().hw_enc())
|
|
.encode(sink);
|
|
}
|
|
|
|
Inst::XmmRmRBlendVex {
|
|
op,
|
|
src1,
|
|
src2,
|
|
mask,
|
|
dst,
|
|
} => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src1 = allocs.next(src1.to_reg());
|
|
let src2 = match src2.clone().to_reg_mem().with_allocs(allocs) {
|
|
RegMem::Reg { reg } => {
|
|
RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
|
|
}
|
|
RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
|
|
};
|
|
let mask = allocs.next(mask.to_reg());
|
|
|
|
let opcode = match op {
|
|
AvxOpcode::Vblendvps => 0x4A,
|
|
AvxOpcode::Vblendvpd => 0x4B,
|
|
AvxOpcode::Vpblendvb => 0x4C,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.prefix(LegacyPrefixes::_66)
|
|
.map(OpcodeMap::_0F3A)
|
|
.opcode(opcode)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc())
|
|
.vvvv(src1.to_real_reg().unwrap().hw_enc())
|
|
.rm(src2)
|
|
.imm(mask.to_real_reg().unwrap().hw_enc() << 4)
|
|
.encode(sink);
|
|
}
|
|
|
|
Inst::XmmUnaryRmRVex { op, src, dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src = match src.clone().to_reg_mem().with_allocs(allocs) {
|
|
RegMem::Reg { reg } => {
|
|
RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
|
|
}
|
|
RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
|
|
};
|
|
|
|
let (prefix, map, opcode) = match op {
|
|
AvxOpcode::Vpmovsxbw => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x20),
|
|
AvxOpcode::Vpmovzxbw => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x30),
|
|
AvxOpcode::Vpmovsxwd => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x23),
|
|
AvxOpcode::Vpmovzxwd => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x33),
|
|
AvxOpcode::Vpmovsxdq => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x25),
|
|
AvxOpcode::Vpmovzxdq => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x35),
|
|
AvxOpcode::Vpabsb => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x1C),
|
|
AvxOpcode::Vpabsw => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x1D),
|
|
AvxOpcode::Vpabsd => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x1E),
|
|
AvxOpcode::Vsqrtps => (LegacyPrefixes::None, OpcodeMap::_0F, 0x51),
|
|
AvxOpcode::Vsqrtpd => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x51),
|
|
AvxOpcode::Vcvtdq2pd => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0xE6),
|
|
AvxOpcode::Vcvtdq2ps => (LegacyPrefixes::None, OpcodeMap::_0F, 0x5B),
|
|
AvxOpcode::Vcvtpd2ps => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x5A),
|
|
AvxOpcode::Vcvtps2pd => (LegacyPrefixes::None, OpcodeMap::_0F, 0x5A),
|
|
AvxOpcode::Vcvttpd2dq => (LegacyPrefixes::_66, OpcodeMap::_0F, 0xE6),
|
|
AvxOpcode::Vcvttps2dq => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x5B),
|
|
AvxOpcode::Vmovdqu => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x6F),
|
|
AvxOpcode::Vmovups => (LegacyPrefixes::None, OpcodeMap::_0F, 0x10),
|
|
AvxOpcode::Vmovupd => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x10),
|
|
|
|
// Note that for `vmov{s,d}` the `inst.isle` rules should
|
|
// statically ensure that only `Amode` operands are used here.
|
|
// Otherwise the other encodings of `vmovss` are more like
|
|
// 2-operand instructions which this unary encoding does not
|
|
// have.
|
|
AvxOpcode::Vmovss => match &src {
|
|
RegisterOrAmode::Amode(_) => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x10),
|
|
_ => unreachable!(),
|
|
},
|
|
AvxOpcode::Vmovsd => match &src {
|
|
RegisterOrAmode::Amode(_) => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x10),
|
|
_ => unreachable!(),
|
|
},
|
|
|
|
AvxOpcode::Vpbroadcastb => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x78),
|
|
AvxOpcode::Vpbroadcastw => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x79),
|
|
AvxOpcode::Vpbroadcastd => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x58),
|
|
AvxOpcode::Vbroadcastss => (LegacyPrefixes::_66, OpcodeMap::_0F38, 0x18),
|
|
AvxOpcode::Vmovddup => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x12),
|
|
|
|
AvxOpcode::Vcvtss2sd => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x5A),
|
|
AvxOpcode::Vcvtsd2ss => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x5A),
|
|
AvxOpcode::Vsqrtss => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x51),
|
|
AvxOpcode::Vsqrtsd => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x51),
|
|
|
|
_ => panic!("unexpected rmr_imm_vex opcode {op:?}"),
|
|
};
|
|
|
|
let vex = VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.prefix(prefix)
|
|
.map(map)
|
|
.opcode(opcode)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc())
|
|
.rm(src);
|
|
|
|
// These opcodes take a second operand through `vvvv` which copies
|
|
// the upper bits into the destination register. That's not
|
|
// reflected in the CLIF instruction, however, since the SSE version
|
|
// doesn't have this functionality. Instead just copy whatever
|
|
// happens to already be in the destination, which at least is what
|
|
// LLVM seems to do.
|
|
let vex = match op {
|
|
AvxOpcode::Vcvtss2sd
|
|
| AvxOpcode::Vcvtsd2ss
|
|
| AvxOpcode::Vsqrtss
|
|
| AvxOpcode::Vsqrtsd => vex.vvvv(dst.to_real_reg().unwrap().hw_enc()),
|
|
_ => vex,
|
|
};
|
|
vex.encode(sink);
|
|
}
|
|
|
|
Inst::XmmUnaryRmRImmVex { op, src, dst, imm } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src = match src.clone().to_reg_mem().with_allocs(allocs) {
|
|
RegMem::Reg { reg } => {
|
|
RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
|
|
}
|
|
RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
|
|
};
|
|
|
|
let (prefix, map, opcode) = match op {
|
|
AvxOpcode::Vroundps => (LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x08),
|
|
AvxOpcode::Vroundpd => (LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x09),
|
|
AvxOpcode::Vpshuflw => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x70),
|
|
AvxOpcode::Vpshufhw => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x70),
|
|
AvxOpcode::Vpshufd => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x70),
|
|
AvxOpcode::Vroundss => (LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x0A),
|
|
AvxOpcode::Vroundsd => (LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x0B),
|
|
_ => panic!("unexpected rmr_imm_vex opcode {op:?}"),
|
|
};
|
|
|
|
let vex = VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.prefix(prefix)
|
|
.map(map)
|
|
.opcode(opcode)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc())
|
|
.rm(src)
|
|
.imm(*imm);
|
|
|
|
// See comments in similar block above in `XmmUnaryRmRVex` for what
|
|
// this is doing.
|
|
let vex = match op {
|
|
AvxOpcode::Vroundss | AvxOpcode::Vroundsd => {
|
|
vex.vvvv(dst.to_real_reg().unwrap().hw_enc())
|
|
}
|
|
_ => vex,
|
|
};
|
|
vex.encode(sink);
|
|
}
|
|
|
|
Inst::XmmMovRMVex { op, src, dst } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = dst.with_allocs(allocs).finalize(state, sink);
|
|
|
|
let (prefix, map, opcode) = match op {
|
|
AvxOpcode::Vmovdqu => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x7F),
|
|
AvxOpcode::Vmovss => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x11),
|
|
AvxOpcode::Vmovsd => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x11),
|
|
AvxOpcode::Vmovups => (LegacyPrefixes::None, OpcodeMap::_0F, 0x11),
|
|
AvxOpcode::Vmovupd => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x11),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.prefix(prefix)
|
|
.map(map)
|
|
.opcode(opcode)
|
|
.rm(dst)
|
|
.reg(src.to_real_reg().unwrap().hw_enc())
|
|
.encode(sink);
|
|
}
|
|
|
|
Inst::XmmMovRMImmVex { op, src, dst, imm } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = dst.with_allocs(allocs).finalize(state, sink);
|
|
|
|
let (w, prefix, map, opcode) = match op {
|
|
AvxOpcode::Vpextrb => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x14),
|
|
AvxOpcode::Vpextrw => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x15),
|
|
AvxOpcode::Vpextrd => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x16),
|
|
AvxOpcode::Vpextrq => (true, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x16),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.w(w)
|
|
.prefix(prefix)
|
|
.map(map)
|
|
.opcode(opcode)
|
|
.rm(dst)
|
|
.reg(src.to_real_reg().unwrap().hw_enc())
|
|
.imm(*imm)
|
|
.encode(sink);
|
|
}
|
|
|
|
Inst::XmmToGprImmVex { op, src, dst, imm } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
|
|
let (w, prefix, map, opcode) = match op {
|
|
AvxOpcode::Vpextrb => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x14),
|
|
AvxOpcode::Vpextrw => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x15),
|
|
AvxOpcode::Vpextrd => (false, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x16),
|
|
AvxOpcode::Vpextrq => (true, LegacyPrefixes::_66, OpcodeMap::_0F3A, 0x16),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.w(w)
|
|
.prefix(prefix)
|
|
.map(map)
|
|
.opcode(opcode)
|
|
.rm(dst.to_real_reg().unwrap().hw_enc())
|
|
.reg(src.to_real_reg().unwrap().hw_enc())
|
|
.imm(*imm)
|
|
.encode(sink);
|
|
}
|
|
|
|
Inst::XmmToGprVex {
|
|
op,
|
|
src,
|
|
dst,
|
|
dst_size,
|
|
} => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
|
|
let (prefix, map, opcode) = match op {
|
|
// vmovd/vmovq are differentiated by `w`
|
|
AvxOpcode::Vmovd | AvxOpcode::Vmovq => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x7E),
|
|
AvxOpcode::Vmovmskps => (LegacyPrefixes::None, OpcodeMap::_0F, 0x50),
|
|
AvxOpcode::Vmovmskpd => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x50),
|
|
AvxOpcode::Vpmovmskb => (LegacyPrefixes::_66, OpcodeMap::_0F, 0xD7),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
let w = match dst_size {
|
|
OperandSize::Size64 => true,
|
|
_ => false,
|
|
};
|
|
let mut vex = VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.w(w)
|
|
.prefix(prefix)
|
|
.map(map)
|
|
.opcode(opcode);
|
|
vex = match op {
|
|
// The `vmovq/vmovd` reverse the order of the destination/source
|
|
// relative to other opcodes using this shape of instruction.
|
|
AvxOpcode::Vmovd | AvxOpcode::Vmovq => vex
|
|
.rm(dst.to_real_reg().unwrap().hw_enc())
|
|
.reg(src.to_real_reg().unwrap().hw_enc()),
|
|
_ => vex
|
|
.rm(src.to_real_reg().unwrap().hw_enc())
|
|
.reg(dst.to_real_reg().unwrap().hw_enc()),
|
|
};
|
|
vex.encode(sink);
|
|
}
|
|
|
|
Inst::GprToXmmVex {
|
|
op,
|
|
src,
|
|
dst,
|
|
src_size,
|
|
} => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src = match src.clone().to_reg_mem().with_allocs(allocs) {
|
|
RegMem::Reg { reg } => {
|
|
RegisterOrAmode::Register(reg.to_real_reg().unwrap().hw_enc().into())
|
|
}
|
|
RegMem::Mem { addr } => RegisterOrAmode::Amode(addr.finalize(state, sink)),
|
|
};
|
|
|
|
let (prefix, map, opcode) = match op {
|
|
// vmovd/vmovq are differentiated by `w`
|
|
AvxOpcode::Vmovd | AvxOpcode::Vmovq => (LegacyPrefixes::_66, OpcodeMap::_0F, 0x6E),
|
|
AvxOpcode::Vcvtsi2ss => (LegacyPrefixes::_F3, OpcodeMap::_0F, 0x2A),
|
|
AvxOpcode::Vcvtsi2sd => (LegacyPrefixes::_F2, OpcodeMap::_0F, 0x2A),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
let w = match src_size {
|
|
OperandSize::Size64 => true,
|
|
_ => false,
|
|
};
|
|
let mut insn = VexInstruction::new()
|
|
.length(VexVectorLength::V128)
|
|
.w(w)
|
|
.prefix(prefix)
|
|
.map(map)
|
|
.opcode(opcode)
|
|
.rm(src)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc());
|
|
// These opcodes technically take a second operand which is the
|
|
// upper bits to preserve during the float conversion. We don't
|
|
// actually use this in this backend right now so reuse the
|
|
// destination register. This at least matches what LLVM does.
|
|
if let AvxOpcode::Vcvtsi2ss | AvxOpcode::Vcvtsi2sd = op {
|
|
insn = insn.vvvv(dst.to_real_reg().unwrap().hw_enc());
|
|
}
|
|
insn.encode(sink);
|
|
}
|
|
|
|
Inst::XmmRmREvex {
|
|
op,
|
|
src1,
|
|
src2,
|
|
dst,
|
|
}
|
|
| Inst::XmmRmREvex3 {
|
|
op,
|
|
src1,
|
|
src2,
|
|
dst,
|
|
// `dst` reuses `src3`.
|
|
..
|
|
} => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let src2 = allocs.next(src2.to_reg());
|
|
if let Inst::XmmRmREvex3 { src3, .. } = inst {
|
|
let src3 = allocs.next(src3.to_reg());
|
|
debug_assert_eq!(src3, dst);
|
|
}
|
|
let src1 = src1.clone().to_reg_mem().with_allocs(allocs);
|
|
|
|
let (w, opcode) = match op {
|
|
Avx512Opcode::Vpermi2b => (false, 0x75),
|
|
Avx512Opcode::Vpmullq => (true, 0x40),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
match src1 {
|
|
RegMem::Reg { reg: src } => EvexInstruction::new()
|
|
.length(EvexVectorLength::V128)
|
|
.prefix(LegacyPrefixes::_66)
|
|
.map(OpcodeMap::_0F38)
|
|
.w(w)
|
|
.opcode(opcode)
|
|
.reg(dst.to_real_reg().unwrap().hw_enc())
|
|
.rm(src.to_real_reg().unwrap().hw_enc())
|
|
.vvvvv(src2.to_real_reg().unwrap().hw_enc())
|
|
.encode(sink),
|
|
_ => todo!(),
|
|
};
|
|
}
|
|
|
|
Inst::XmmMinMaxSeq {
|
|
size,
|
|
is_min,
|
|
lhs,
|
|
rhs,
|
|
dst,
|
|
} => {
|
|
let rhs = allocs.next(rhs.to_reg());
|
|
let lhs = allocs.next(lhs.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(rhs, dst);
|
|
|
|
// Generates the following sequence:
|
|
// cmpss/cmpsd %lhs, %rhs_dst
|
|
// jnz do_min_max
|
|
// jp propagate_nan
|
|
//
|
|
// ;; ordered and equal: propagate the sign bit (for -0 vs 0):
|
|
// {and,or}{ss,sd} %lhs, %rhs_dst
|
|
// j done
|
|
//
|
|
// ;; to get the desired NaN behavior (signalling NaN transformed into a quiet NaN, the
|
|
// ;; NaN value is returned), we add both inputs.
|
|
// propagate_nan:
|
|
// add{ss,sd} %lhs, %rhs_dst
|
|
// j done
|
|
//
|
|
// do_min_max:
|
|
// {min,max}{ss,sd} %lhs, %rhs_dst
|
|
//
|
|
// done:
|
|
let done = sink.get_label();
|
|
let propagate_nan = sink.get_label();
|
|
let do_min_max = sink.get_label();
|
|
|
|
let (add_op, cmp_op, and_op, or_op, min_max_op) = match size {
|
|
OperandSize::Size32 => (
|
|
SseOpcode::Addss,
|
|
SseOpcode::Ucomiss,
|
|
SseOpcode::Andps,
|
|
SseOpcode::Orps,
|
|
if *is_min {
|
|
SseOpcode::Minss
|
|
} else {
|
|
SseOpcode::Maxss
|
|
},
|
|
),
|
|
OperandSize::Size64 => (
|
|
SseOpcode::Addsd,
|
|
SseOpcode::Ucomisd,
|
|
SseOpcode::Andpd,
|
|
SseOpcode::Orpd,
|
|
if *is_min {
|
|
SseOpcode::Minsd
|
|
} else {
|
|
SseOpcode::Maxsd
|
|
},
|
|
),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(lhs), dst);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
one_way_jmp(sink, CC::NZ, do_min_max);
|
|
one_way_jmp(sink, CC::P, propagate_nan);
|
|
|
|
// Ordered and equal. The operands are bit-identical unless they are zero
|
|
// and negative zero. These instructions merge the sign bits in that
|
|
// case, and are no-ops otherwise.
|
|
let op = if *is_min { or_op } else { and_op };
|
|
let inst = Inst::xmm_rm_r(op, RegMem::reg(lhs), Writable::from_reg(dst));
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::jmp_known(done);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// x86's min/max are not symmetric; if either operand is a NaN, they return the
|
|
// read-only operand: perform an addition between the two operands, which has the
|
|
// desired NaN propagation effects.
|
|
sink.bind_label(propagate_nan, &mut state.ctrl_plane);
|
|
let inst = Inst::xmm_rm_r(add_op, RegMem::reg(lhs), Writable::from_reg(dst));
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
one_way_jmp(sink, CC::P, done);
|
|
|
|
sink.bind_label(do_min_max, &mut state.ctrl_plane);
|
|
|
|
let inst = Inst::xmm_rm_r(min_max_op, RegMem::reg(lhs), Writable::from_reg(dst));
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
sink.bind_label(done, &mut state.ctrl_plane);
|
|
}
|
|
|
|
Inst::XmmRmRImm {
|
|
op,
|
|
src1,
|
|
src2,
|
|
dst,
|
|
imm,
|
|
size,
|
|
} => {
|
|
let src1 = allocs.next(*src1);
|
|
let dst = allocs.next(dst.to_reg());
|
|
let src2 = src2.with_allocs(allocs);
|
|
debug_assert_eq!(src1, dst);
|
|
|
|
let (prefix, opcode, len) = match op {
|
|
SseOpcode::Cmpps => (LegacyPrefixes::None, 0x0FC2, 2),
|
|
SseOpcode::Cmppd => (LegacyPrefixes::_66, 0x0FC2, 2),
|
|
SseOpcode::Cmpss => (LegacyPrefixes::_F3, 0x0FC2, 2),
|
|
SseOpcode::Cmpsd => (LegacyPrefixes::_F2, 0x0FC2, 2),
|
|
SseOpcode::Insertps => (LegacyPrefixes::_66, 0x0F3A21, 3),
|
|
SseOpcode::Palignr => (LegacyPrefixes::_66, 0x0F3A0F, 3),
|
|
SseOpcode::Pinsrb => (LegacyPrefixes::_66, 0x0F3A20, 3),
|
|
SseOpcode::Pinsrw => (LegacyPrefixes::_66, 0x0FC4, 2),
|
|
SseOpcode::Pinsrd => (LegacyPrefixes::_66, 0x0F3A22, 3),
|
|
SseOpcode::Shufps => (LegacyPrefixes::None, 0x0FC6, 2),
|
|
SseOpcode::Pblendw => (LegacyPrefixes::_66, 0x0F3A0E, 3),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
let rex = RexFlags::from(*size);
|
|
let regs_swapped = match *op {
|
|
// These opcodes (and not the SSE2 version of PEXTRW) flip the operand
|
|
// encoding: `dst` in ModRM's r/m, `src` in ModRM's reg field.
|
|
SseOpcode::Pextrb | SseOpcode::Pextrd => true,
|
|
// The rest of the opcodes have the customary encoding: `dst` in ModRM's reg,
|
|
// `src` in ModRM's r/m field.
|
|
_ => false,
|
|
};
|
|
match src2 {
|
|
RegMem::Reg { reg } => {
|
|
if regs_swapped {
|
|
emit_std_reg_reg(sink, prefix, opcode, len, reg, dst, rex);
|
|
} else {
|
|
emit_std_reg_reg(sink, prefix, opcode, len, dst, reg, rex);
|
|
}
|
|
}
|
|
RegMem::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink);
|
|
assert!(
|
|
!regs_swapped,
|
|
"No existing way to encode a mem argument in the ModRM r/m field."
|
|
);
|
|
// N.B.: bytes_at_end == 1, because of the `imm` byte below.
|
|
emit_std_reg_mem(sink, prefix, opcode, len, dst, addr, rex, 1);
|
|
}
|
|
}
|
|
sink.put1(*imm);
|
|
}
|
|
|
|
Inst::XmmUninitializedValue { .. } => {
|
|
// This instruction format only exists to declare a register as a `def`; no code is
|
|
// emitted.
|
|
}
|
|
|
|
Inst::XmmMovRM { op, src, dst } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = dst.with_allocs(allocs);
|
|
|
|
let (prefix, opcode) = match op {
|
|
SseOpcode::Movaps => (LegacyPrefixes::None, 0x0F29),
|
|
SseOpcode::Movapd => (LegacyPrefixes::_66, 0x0F29),
|
|
SseOpcode::Movdqu => (LegacyPrefixes::_F3, 0x0F7F),
|
|
SseOpcode::Movss => (LegacyPrefixes::_F3, 0x0F11),
|
|
SseOpcode::Movsd => (LegacyPrefixes::_F2, 0x0F11),
|
|
SseOpcode::Movups => (LegacyPrefixes::None, 0x0F11),
|
|
SseOpcode::Movupd => (LegacyPrefixes::_66, 0x0F11),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
let dst = &dst.finalize(state, sink);
|
|
emit_std_reg_mem(sink, prefix, opcode, 2, src, dst, RexFlags::clear_w(), 0);
|
|
}
|
|
|
|
Inst::XmmMovRMImm { op, src, dst, imm } => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = dst.with_allocs(allocs);
|
|
|
|
let (w, prefix, opcode) = match op {
|
|
SseOpcode::Pextrb => (false, LegacyPrefixes::_66, 0x0F3A14),
|
|
SseOpcode::Pextrw => (false, LegacyPrefixes::_66, 0x0F3A15),
|
|
SseOpcode::Pextrd => (false, LegacyPrefixes::_66, 0x0F3A16),
|
|
SseOpcode::Pextrq => (true, LegacyPrefixes::_66, 0x0F3A16),
|
|
_ => unimplemented!("Opcode {:?} not implemented", op),
|
|
};
|
|
let rex = if w {
|
|
RexFlags::set_w()
|
|
} else {
|
|
RexFlags::clear_w()
|
|
};
|
|
let dst = &dst.finalize(state, sink);
|
|
emit_std_reg_mem(sink, prefix, opcode, 3, src, dst, rex, 1);
|
|
sink.put1(*imm);
|
|
}
|
|
|
|
Inst::XmmToGpr {
|
|
op,
|
|
src,
|
|
dst,
|
|
dst_size,
|
|
} => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
|
|
let (prefix, opcode, dst_first) = match op {
|
|
SseOpcode::Cvttss2si => (LegacyPrefixes::_F3, 0x0F2C, true),
|
|
SseOpcode::Cvttsd2si => (LegacyPrefixes::_F2, 0x0F2C, true),
|
|
// Movd and movq use the same opcode; the presence of the REX prefix (set below)
|
|
// actually determines which is used.
|
|
SseOpcode::Movd | SseOpcode::Movq => (LegacyPrefixes::_66, 0x0F7E, false),
|
|
SseOpcode::Movmskps => (LegacyPrefixes::None, 0x0F50, true),
|
|
SseOpcode::Movmskpd => (LegacyPrefixes::_66, 0x0F50, true),
|
|
SseOpcode::Pmovmskb => (LegacyPrefixes::_66, 0x0FD7, true),
|
|
_ => panic!("unexpected opcode {:?}", op),
|
|
};
|
|
let rex = RexFlags::from(*dst_size);
|
|
let (src, dst) = if dst_first { (dst, src) } else { (src, dst) };
|
|
|
|
emit_std_reg_reg(sink, prefix, opcode, 2, src, dst, rex);
|
|
}
|
|
|
|
Inst::XmmToGprImm { op, src, dst, imm } => {
|
|
use OperandSize as OS;
|
|
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
|
|
let (prefix, opcode, opcode_bytes, dst_size, dst_first) = match op {
|
|
SseOpcode::Pextrb => (LegacyPrefixes::_66, 0x0F3A14, 3, OS::Size32, false),
|
|
SseOpcode::Pextrw => (LegacyPrefixes::_66, 0x0FC5, 2, OS::Size32, true),
|
|
SseOpcode::Pextrd => (LegacyPrefixes::_66, 0x0F3A16, 3, OS::Size32, false),
|
|
SseOpcode::Pextrq => (LegacyPrefixes::_66, 0x0F3A16, 3, OS::Size64, false),
|
|
_ => panic!("unexpected opcode {:?}", op),
|
|
};
|
|
let rex = RexFlags::from(dst_size);
|
|
let (src, dst) = if dst_first { (dst, src) } else { (src, dst) };
|
|
|
|
emit_std_reg_reg(sink, prefix, opcode, opcode_bytes, src, dst, rex);
|
|
sink.put1(*imm);
|
|
}
|
|
|
|
Inst::GprToXmm {
|
|
op,
|
|
src: src_e,
|
|
dst: reg_g,
|
|
src_size,
|
|
} => {
|
|
let reg_g = allocs.next(reg_g.to_reg().to_reg());
|
|
let src_e = src_e.clone().to_reg_mem().with_allocs(allocs);
|
|
|
|
let (prefix, opcode) = match op {
|
|
// Movd and movq use the same opcode; the presence of the REX prefix (set below)
|
|
// actually determines which is used.
|
|
SseOpcode::Movd | SseOpcode::Movq => (LegacyPrefixes::_66, 0x0F6E),
|
|
SseOpcode::Cvtsi2ss => (LegacyPrefixes::_F3, 0x0F2A),
|
|
SseOpcode::Cvtsi2sd => (LegacyPrefixes::_F2, 0x0F2A),
|
|
_ => panic!("unexpected opcode {:?}", op),
|
|
};
|
|
let rex = RexFlags::from(*src_size);
|
|
match src_e {
|
|
RegMem::Reg { reg: reg_e } => {
|
|
emit_std_reg_reg(sink, prefix, opcode, 2, reg_g, reg_e, rex);
|
|
}
|
|
RegMem::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink);
|
|
emit_std_reg_mem(sink, prefix, opcode, 2, reg_g, addr, rex, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::XmmCmpRmR { op, src, dst } => {
|
|
let dst = allocs.next(dst.to_reg());
|
|
let src = src.clone().to_reg_mem().with_allocs(allocs);
|
|
|
|
let rex = RexFlags::clear_w();
|
|
let (prefix, opcode, len) = match op {
|
|
SseOpcode::Ptest => (LegacyPrefixes::_66, 0x0F3817, 3),
|
|
SseOpcode::Ucomisd => (LegacyPrefixes::_66, 0x0F2E, 2),
|
|
SseOpcode::Ucomiss => (LegacyPrefixes::None, 0x0F2E, 2),
|
|
_ => unimplemented!("Emit xmm cmp rm r"),
|
|
};
|
|
|
|
match src {
|
|
RegMem::Reg { reg } => {
|
|
emit_std_reg_reg(sink, prefix, opcode, len, dst, reg, rex);
|
|
}
|
|
RegMem::Mem { addr } => {
|
|
let addr = &addr.finalize(state, sink);
|
|
emit_std_reg_mem(sink, prefix, opcode, len, dst, addr, rex, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst::CvtUint64ToFloatSeq {
|
|
dst_size,
|
|
src,
|
|
dst,
|
|
tmp_gpr1,
|
|
tmp_gpr2,
|
|
} => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let tmp_gpr1 = allocs.next(tmp_gpr1.to_reg().to_reg());
|
|
let tmp_gpr2 = allocs.next(tmp_gpr2.to_reg().to_reg());
|
|
|
|
// Note: this sequence is specific to 64-bit mode; a 32-bit mode would require a
|
|
// different sequence.
|
|
//
|
|
// Emit the following sequence:
|
|
//
|
|
// cmp 0, %src
|
|
// jl handle_negative
|
|
//
|
|
// ;; handle positive, which can't overflow
|
|
// cvtsi2sd/cvtsi2ss %src, %dst
|
|
// j done
|
|
//
|
|
// ;; handle negative: see below for an explanation of what it's doing.
|
|
// handle_negative:
|
|
// mov %src, %tmp_gpr1
|
|
// shr $1, %tmp_gpr1
|
|
// mov %src, %tmp_gpr2
|
|
// and $1, %tmp_gpr2
|
|
// or %tmp_gpr1, %tmp_gpr2
|
|
// cvtsi2sd/cvtsi2ss %tmp_gpr2, %dst
|
|
// addsd/addss %dst, %dst
|
|
//
|
|
// done:
|
|
|
|
assert_ne!(src, tmp_gpr1);
|
|
assert_ne!(src, tmp_gpr2);
|
|
assert_ne!(tmp_gpr1, tmp_gpr2);
|
|
|
|
let handle_negative = sink.get_label();
|
|
let done = sink.get_label();
|
|
|
|
// If x seen as a signed int64 is not negative, a signed-conversion will do the right
|
|
// thing.
|
|
// TODO use tst src, src here.
|
|
let inst = Inst::cmp_rmi_r(OperandSize::Size64, RegMemImm::imm(0), src);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
one_way_jmp(sink, CC::L, handle_negative);
|
|
|
|
// Handle a positive int64, which is the "easy" case: a signed conversion will do the
|
|
// right thing.
|
|
emit_signed_cvt(
|
|
sink,
|
|
info,
|
|
state,
|
|
src,
|
|
Writable::from_reg(dst),
|
|
*dst_size == OperandSize::Size64,
|
|
);
|
|
|
|
let inst = Inst::jmp_known(done);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
sink.bind_label(handle_negative, &mut state.ctrl_plane);
|
|
|
|
// Divide x by two to get it in range for the signed conversion, keep the LSB, and
|
|
// scale it back up on the FP side.
|
|
let inst = Inst::gen_move(Writable::from_reg(tmp_gpr1), src, types::I64);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// tmp_gpr1 := src >> 1
|
|
let inst = Inst::shift_r(
|
|
OperandSize::Size64,
|
|
ShiftKind::ShiftRightLogical,
|
|
Imm8Gpr::new(Imm8Reg::Imm8 { imm: 1 }).unwrap(),
|
|
tmp_gpr1,
|
|
Writable::from_reg(tmp_gpr1),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::gen_move(Writable::from_reg(tmp_gpr2), src, types::I64);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::alu_rmi_r(
|
|
OperandSize::Size64,
|
|
AluRmiROpcode::And,
|
|
RegMemImm::imm(1),
|
|
Writable::from_reg(tmp_gpr2),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::alu_rmi_r(
|
|
OperandSize::Size64,
|
|
AluRmiROpcode::Or,
|
|
RegMemImm::reg(tmp_gpr1),
|
|
Writable::from_reg(tmp_gpr2),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
emit_signed_cvt(
|
|
sink,
|
|
info,
|
|
state,
|
|
tmp_gpr2,
|
|
Writable::from_reg(dst),
|
|
*dst_size == OperandSize::Size64,
|
|
);
|
|
|
|
let add_op = if *dst_size == OperandSize::Size64 {
|
|
SseOpcode::Addsd
|
|
} else {
|
|
SseOpcode::Addss
|
|
};
|
|
let inst = Inst::xmm_rm_r(add_op, RegMem::reg(dst), Writable::from_reg(dst));
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
sink.bind_label(done, &mut state.ctrl_plane);
|
|
}
|
|
|
|
Inst::CvtFloatToSintSeq {
|
|
src_size,
|
|
dst_size,
|
|
is_saturating,
|
|
src,
|
|
dst,
|
|
tmp_gpr,
|
|
tmp_xmm,
|
|
} => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let tmp_gpr = allocs.next(tmp_gpr.to_reg().to_reg());
|
|
let tmp_xmm = allocs.next(tmp_xmm.to_reg().to_reg());
|
|
|
|
// Emits the following common sequence:
|
|
//
|
|
// cvttss2si/cvttsd2si %src, %dst
|
|
// cmp %dst, 1
|
|
// jno done
|
|
//
|
|
// Then, for saturating conversions:
|
|
//
|
|
// ;; check for NaN
|
|
// cmpss/cmpsd %src, %src
|
|
// jnp not_nan
|
|
// xor %dst, %dst
|
|
//
|
|
// ;; positive inputs get saturated to INT_MAX; negative ones to INT_MIN, which is
|
|
// ;; already in %dst.
|
|
// xorpd %tmp_xmm, %tmp_xmm
|
|
// cmpss/cmpsd %src, %tmp_xmm
|
|
// jnb done
|
|
// mov/movaps $INT_MAX, %dst
|
|
//
|
|
// done:
|
|
//
|
|
// Then, for non-saturating conversions:
|
|
//
|
|
// ;; check for NaN
|
|
// cmpss/cmpsd %src, %src
|
|
// jnp not_nan
|
|
// ud2 trap BadConversionToInteger
|
|
//
|
|
// ;; check if INT_MIN was the correct result, against a magic constant:
|
|
// not_nan:
|
|
// movaps/mov $magic, %tmp_gpr
|
|
// movq/movd %tmp_gpr, %tmp_xmm
|
|
// cmpss/cmpsd %tmp_xmm, %src
|
|
// jnb/jnbe $check_positive
|
|
// ud2 trap IntegerOverflow
|
|
//
|
|
// ;; if positive, it was a real overflow
|
|
// check_positive:
|
|
// xorpd %tmp_xmm, %tmp_xmm
|
|
// cmpss/cmpsd %src, %tmp_xmm
|
|
// jnb done
|
|
// ud2 trap IntegerOverflow
|
|
//
|
|
// done:
|
|
|
|
let (cast_op, cmp_op, trunc_op) = match src_size {
|
|
OperandSize::Size64 => (SseOpcode::Movq, SseOpcode::Ucomisd, SseOpcode::Cvttsd2si),
|
|
OperandSize::Size32 => (SseOpcode::Movd, SseOpcode::Ucomiss, SseOpcode::Cvttss2si),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let done = sink.get_label();
|
|
|
|
// The truncation.
|
|
let inst = Inst::xmm_to_gpr(trunc_op, src, Writable::from_reg(dst), *dst_size);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// Compare against 1, in case of overflow the dst operand was INT_MIN.
|
|
let inst = Inst::cmp_rmi_r(*dst_size, RegMemImm::imm(1), dst);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
one_way_jmp(sink, CC::NO, done); // no overflow => done
|
|
|
|
// Check for NaN.
|
|
|
|
let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(src), src);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
if *is_saturating {
|
|
let not_nan = sink.get_label();
|
|
one_way_jmp(sink, CC::NP, not_nan); // go to not_nan if not a NaN
|
|
|
|
// For NaN, emit 0.
|
|
let inst = Inst::alu_rmi_r(
|
|
*dst_size,
|
|
AluRmiROpcode::Xor,
|
|
RegMemImm::reg(dst),
|
|
Writable::from_reg(dst),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::jmp_known(done);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
sink.bind_label(not_nan, &mut state.ctrl_plane);
|
|
|
|
// If the input was positive, saturate to INT_MAX.
|
|
|
|
// Zero out tmp_xmm.
|
|
let inst = Inst::xmm_rm_r(
|
|
SseOpcode::Xorpd,
|
|
RegMem::reg(tmp_xmm),
|
|
Writable::from_reg(tmp_xmm),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(src), tmp_xmm);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// Jump if >= to done.
|
|
one_way_jmp(sink, CC::NB, done);
|
|
|
|
// Otherwise, put INT_MAX.
|
|
if *dst_size == OperandSize::Size64 {
|
|
let inst = Inst::imm(
|
|
OperandSize::Size64,
|
|
0x7fffffffffffffff,
|
|
Writable::from_reg(dst),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
} else {
|
|
let inst = Inst::imm(OperandSize::Size32, 0x7fffffff, Writable::from_reg(dst));
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
} else {
|
|
let inst = Inst::trap_if(CC::P, TrapCode::BadConversionToInteger);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// Check if INT_MIN was the correct result: determine the smallest floating point
|
|
// number that would convert to INT_MIN, put it in a temporary register, and compare
|
|
// against the src register.
|
|
// If the src register is less (or in some cases, less-or-equal) than the threshold,
|
|
// trap!
|
|
|
|
let mut no_overflow_cc = CC::NB; // >=
|
|
let output_bits = dst_size.to_bits();
|
|
match *src_size {
|
|
OperandSize::Size32 => {
|
|
let cst = Ieee32::pow2(output_bits - 1).neg().bits();
|
|
let inst =
|
|
Inst::imm(OperandSize::Size32, cst as u64, Writable::from_reg(tmp_gpr));
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
OperandSize::Size64 => {
|
|
// An f64 can represent `i32::min_value() - 1` exactly with precision to spare,
|
|
// so there are values less than -2^(N-1) that convert correctly to INT_MIN.
|
|
let cst = if output_bits < 64 {
|
|
no_overflow_cc = CC::NBE; // >
|
|
Ieee64::fcvt_to_sint_negative_overflow(output_bits)
|
|
} else {
|
|
Ieee64::pow2(output_bits - 1).neg()
|
|
};
|
|
let inst =
|
|
Inst::imm(OperandSize::Size64, cst.bits(), Writable::from_reg(tmp_gpr));
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
|
|
let inst = Inst::gpr_to_xmm(
|
|
cast_op,
|
|
RegMem::reg(tmp_gpr),
|
|
*src_size,
|
|
Writable::from_reg(tmp_xmm),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(tmp_xmm), src);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// no trap if src >= or > threshold
|
|
let inst = Inst::trap_if(no_overflow_cc.invert(), TrapCode::IntegerOverflow);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// If positive, it was a real overflow.
|
|
|
|
// Zero out the tmp_xmm register.
|
|
let inst = Inst::xmm_rm_r(
|
|
SseOpcode::Xorpd,
|
|
RegMem::reg(tmp_xmm),
|
|
Writable::from_reg(tmp_xmm),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(src), tmp_xmm);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
// no trap if 0 >= src
|
|
let inst = Inst::trap_if(CC::B, TrapCode::IntegerOverflow);
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
|
|
sink.bind_label(done, &mut state.ctrl_plane);
|
|
}
|
|
|
|
Inst::CvtFloatToUintSeq {
|
|
src_size,
|
|
dst_size,
|
|
is_saturating,
|
|
src,
|
|
dst,
|
|
tmp_gpr,
|
|
tmp_xmm,
|
|
tmp_xmm2,
|
|
} => {
|
|
let src = allocs.next(src.to_reg());
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
let tmp_gpr = allocs.next(tmp_gpr.to_reg().to_reg());
|
|
let tmp_xmm = allocs.next(tmp_xmm.to_reg().to_reg());
|
|
let tmp_xmm2 = allocs.next(tmp_xmm2.to_reg().to_reg());
|
|
|
|
// The only difference in behavior between saturating and non-saturating is how we
|
|
// handle errors. Emits the following sequence:
|
|
//
|
|
// movaps/mov 2**(int_width - 1), %tmp_gpr
|
|
// movq/movd %tmp_gpr, %tmp_xmm
|
|
// cmpss/cmpsd %tmp_xmm, %src
|
|
// jnb is_large
|
|
//
|
|
// ;; check for NaN inputs
|
|
// jnp not_nan
|
|
// -- non-saturating: ud2 trap BadConversionToInteger
|
|
// -- saturating: xor %dst, %dst; j done
|
|
//
|
|
// not_nan:
|
|
// cvttss2si/cvttsd2si %src, %dst
|
|
// cmp 0, %dst
|
|
// jnl done
|
|
// -- non-saturating: ud2 trap IntegerOverflow
|
|
// -- saturating: xor %dst, %dst; j done
|
|
//
|
|
// is_large:
|
|
// mov %src, %tmp_xmm2
|
|
// subss/subsd %tmp_xmm, %tmp_xmm2
|
|
// cvttss2si/cvttss2sd %tmp_x, %dst
|
|
// cmp 0, %dst
|
|
// jnl next_is_large
|
|
// -- non-saturating: ud2 trap IntegerOverflow
|
|
// -- saturating: movaps $UINT_MAX, %dst; j done
|
|
//
|
|
// next_is_large:
|
|
// add 2**(int_width -1), %dst ;; 2 instructions for 64-bits integers
|
|
//
|
|
// done:
|
|
|
|
assert_ne!(tmp_xmm, src, "tmp_xmm clobbers src!");
|
|
|
|
let (sub_op, cast_op, cmp_op, trunc_op) = match src_size {
|
|
OperandSize::Size32 => (
|
|
SseOpcode::Subss,
|
|
SseOpcode::Movd,
|
|
SseOpcode::Ucomiss,
|
|
SseOpcode::Cvttss2si,
|
|
),
|
|
OperandSize::Size64 => (
|
|
SseOpcode::Subsd,
|
|
SseOpcode::Movq,
|
|
SseOpcode::Ucomisd,
|
|
SseOpcode::Cvttsd2si,
|
|
),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let done = sink.get_label();
|
|
|
|
let cst = match src_size {
|
|
OperandSize::Size32 => Ieee32::pow2(dst_size.to_bits() - 1).bits() as u64,
|
|
OperandSize::Size64 => Ieee64::pow2(dst_size.to_bits() - 1).bits(),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let inst = Inst::imm(*src_size, cst, Writable::from_reg(tmp_gpr));
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::gpr_to_xmm(
|
|
cast_op,
|
|
RegMem::reg(tmp_gpr),
|
|
*src_size,
|
|
Writable::from_reg(tmp_xmm),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::xmm_cmp_rm_r(cmp_op, RegMem::reg(tmp_xmm), src);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let handle_large = sink.get_label();
|
|
one_way_jmp(sink, CC::NB, handle_large); // jump to handle_large if src >= large_threshold
|
|
|
|
if *is_saturating {
|
|
// If not NaN jump over this 0-return, otherwise return 0
|
|
let not_nan = sink.get_label();
|
|
one_way_jmp(sink, CC::NP, not_nan);
|
|
let inst = Inst::alu_rmi_r(
|
|
*dst_size,
|
|
AluRmiROpcode::Xor,
|
|
RegMemImm::reg(dst),
|
|
Writable::from_reg(dst),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::jmp_known(done);
|
|
inst.emit(&[], sink, info, state);
|
|
sink.bind_label(not_nan, &mut state.ctrl_plane);
|
|
} else {
|
|
// Trap.
|
|
let inst = Inst::trap_if(CC::P, TrapCode::BadConversionToInteger);
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
|
|
// Actual truncation for small inputs: if the result is not positive, then we had an
|
|
// overflow.
|
|
|
|
let inst = Inst::xmm_to_gpr(trunc_op, src, Writable::from_reg(dst), *dst_size);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::cmp_rmi_r(*dst_size, RegMemImm::imm(0), dst);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
one_way_jmp(sink, CC::NL, done); // if dst >= 0, jump to done
|
|
|
|
if *is_saturating {
|
|
// The input was "small" (< 2**(width -1)), so the only way to get an integer
|
|
// overflow is because the input was too small: saturate to the min value, i.e. 0.
|
|
let inst = Inst::alu_rmi_r(
|
|
*dst_size,
|
|
AluRmiROpcode::Xor,
|
|
RegMemImm::reg(dst),
|
|
Writable::from_reg(dst),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::jmp_known(done);
|
|
inst.emit(&[], sink, info, state);
|
|
} else {
|
|
// Trap.
|
|
let inst = Inst::trap(TrapCode::IntegerOverflow);
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
|
|
// Now handle large inputs.
|
|
|
|
sink.bind_label(handle_large, &mut state.ctrl_plane);
|
|
|
|
let inst = Inst::gen_move(Writable::from_reg(tmp_xmm2), src, types::F64);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::xmm_rm_r(sub_op, RegMem::reg(tmp_xmm), Writable::from_reg(tmp_xmm2));
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::xmm_to_gpr(trunc_op, tmp_xmm2, Writable::from_reg(dst), *dst_size);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::cmp_rmi_r(*dst_size, RegMemImm::imm(0), dst);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
if *is_saturating {
|
|
let next_is_large = sink.get_label();
|
|
one_way_jmp(sink, CC::NL, next_is_large); // if dst >= 0, jump to next_is_large
|
|
|
|
// The input was "large" (>= 2**(width -1)), so the only way to get an integer
|
|
// overflow is because the input was too large: saturate to the max value.
|
|
let inst = Inst::imm(
|
|
OperandSize::Size64,
|
|
if *dst_size == OperandSize::Size64 {
|
|
u64::max_value()
|
|
} else {
|
|
u32::max_value() as u64
|
|
},
|
|
Writable::from_reg(dst),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::jmp_known(done);
|
|
inst.emit(&[], sink, info, state);
|
|
sink.bind_label(next_is_large, &mut state.ctrl_plane);
|
|
} else {
|
|
let inst = Inst::trap_if(CC::L, TrapCode::IntegerOverflow);
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
|
|
if *dst_size == OperandSize::Size64 {
|
|
let inst = Inst::imm(OperandSize::Size64, 1 << 63, Writable::from_reg(tmp_gpr));
|
|
inst.emit(&[], sink, info, state);
|
|
|
|
let inst = Inst::alu_rmi_r(
|
|
OperandSize::Size64,
|
|
AluRmiROpcode::Add,
|
|
RegMemImm::reg(tmp_gpr),
|
|
Writable::from_reg(dst),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
} else {
|
|
let inst = Inst::alu_rmi_r(
|
|
OperandSize::Size32,
|
|
AluRmiROpcode::Add,
|
|
RegMemImm::imm(1 << 31),
|
|
Writable::from_reg(dst),
|
|
);
|
|
inst.emit(&[], sink, info, state);
|
|
}
|
|
|
|
sink.bind_label(done, &mut state.ctrl_plane);
|
|
}
|
|
|
|
Inst::LoadExtName { dst, name, offset } => {
|
|
let dst = allocs.next(dst.to_reg());
|
|
|
|
if info.flags.is_pic() {
|
|
// Generates: movq symbol@GOTPCREL(%rip), %dst
|
|
let enc_dst = int_reg_enc(dst);
|
|
sink.put1(0x48 | ((enc_dst >> 3) & 1) << 2);
|
|
sink.put1(0x8B);
|
|
sink.put1(0x05 | ((enc_dst & 7) << 3));
|
|
emit_reloc(sink, Reloc::X86GOTPCRel4, name, -4);
|
|
sink.put4(0);
|
|
// Offset in the relocation above applies to the address of the *GOT entry*, not
|
|
// the loaded address; so we emit a separate add or sub instruction if needed.
|
|
if *offset < 0 {
|
|
assert!(*offset >= -i32::MAX as i64);
|
|
sink.put1(0x48 | ((enc_dst >> 3) & 1));
|
|
sink.put1(0x81);
|
|
sink.put1(0xe8 | (enc_dst & 7));
|
|
sink.put4((-*offset) as u32);
|
|
} else if *offset > 0 {
|
|
assert!(*offset <= i32::MAX as i64);
|
|
sink.put1(0x48 | ((enc_dst >> 3) & 1));
|
|
sink.put1(0x81);
|
|
sink.put1(0xc0 | (enc_dst & 7));
|
|
sink.put4(*offset as u32);
|
|
}
|
|
} else {
|
|
// The full address can be encoded in the register, with a relocation.
|
|
// Generates: movabsq $name, %dst
|
|
let enc_dst = int_reg_enc(dst);
|
|
sink.put1(0x48 | ((enc_dst >> 3) & 1));
|
|
sink.put1(0xB8 | (enc_dst & 7));
|
|
emit_reloc(sink, Reloc::Abs8, name, *offset);
|
|
sink.put8(0);
|
|
}
|
|
}
|
|
|
|
Inst::LockCmpxchg {
|
|
ty,
|
|
replacement,
|
|
expected,
|
|
mem,
|
|
dst_old,
|
|
} => {
|
|
let replacement = allocs.next(*replacement);
|
|
let expected = allocs.next(*expected);
|
|
let dst_old = allocs.next(dst_old.to_reg());
|
|
let mem = mem.with_allocs(allocs);
|
|
|
|
debug_assert_eq!(expected, regs::rax());
|
|
debug_assert_eq!(dst_old, regs::rax());
|
|
|
|
// lock cmpxchg{b,w,l,q} %replacement, (mem)
|
|
// Note that 0xF0 is the Lock prefix.
|
|
let (prefix, opcodes) = match *ty {
|
|
types::I8 => (LegacyPrefixes::_F0, 0x0FB0),
|
|
types::I16 => (LegacyPrefixes::_66F0, 0x0FB1),
|
|
types::I32 => (LegacyPrefixes::_F0, 0x0FB1),
|
|
types::I64 => (LegacyPrefixes::_F0, 0x0FB1),
|
|
_ => unreachable!(),
|
|
};
|
|
let rex = RexFlags::from((OperandSize::from_ty(*ty), replacement));
|
|
let amode = mem.finalize(state, sink);
|
|
emit_std_reg_mem(sink, prefix, opcodes, 2, replacement, &amode, rex, 0);
|
|
}
|
|
|
|
Inst::AtomicRmwSeq {
|
|
ty,
|
|
op,
|
|
mem,
|
|
operand,
|
|
temp,
|
|
dst_old,
|
|
} => {
|
|
let operand = allocs.next(*operand);
|
|
let temp = allocs.next_writable(*temp);
|
|
let dst_old = allocs.next_writable(*dst_old);
|
|
debug_assert_eq!(dst_old.to_reg(), regs::rax());
|
|
let mem = mem.finalize(state, sink).with_allocs(allocs);
|
|
|
|
// Emit this:
|
|
// mov{zbq,zwq,zlq,q} (%r_address), %rax // rax = old value
|
|
// again:
|
|
// movq %rax, %r_temp // rax = old value, r_temp = old value
|
|
// `op`q %r_operand, %r_temp // rax = old value, r_temp = new value
|
|
// lock cmpxchg{b,w,l,q} %r_temp, (%r_address) // try to store new value
|
|
// jnz again // If this is taken, rax will have a "revised" old value
|
|
//
|
|
// Operand conventions: IN: %r_address, %r_operand OUT: %rax (old
|
|
// value), %r_temp (trashed), %rflags (trashed)
|
|
//
|
|
// In the case where the operation is 'xchg', the "`op`q"
|
|
// instruction is instead: movq %r_operand,
|
|
// %r_temp so that we simply write in the destination, the "2nd
|
|
// arg for `op`".
|
|
//
|
|
// TODO: this sequence can be significantly improved (e.g., to `lock
|
|
// <op>`) when it is known that `dst_old` is not used later, see
|
|
// https://github.com/bytecodealliance/wasmtime/issues/2153.
|
|
let again_label = sink.get_label();
|
|
|
|
// mov{zbq,zwq,zlq,q} (%r_address), %rax
|
|
// No need to call `add_trap` here, since the `i1` emit will do that.
|
|
let i1 = Inst::load(*ty, mem.clone(), dst_old, ExtKind::ZeroExtend);
|
|
i1.emit(&[], sink, info, state);
|
|
|
|
// again:
|
|
sink.bind_label(again_label, &mut state.ctrl_plane);
|
|
|
|
// movq %rax, %r_temp
|
|
let i2 = Inst::mov_r_r(OperandSize::Size64, dst_old.to_reg(), temp);
|
|
i2.emit(&[], sink, info, state);
|
|
|
|
let operand_rmi = RegMemImm::reg(operand);
|
|
use inst_common::MachAtomicRmwOp as RmwOp;
|
|
match op {
|
|
RmwOp::Xchg => {
|
|
// movq %r_operand, %r_temp
|
|
let i3 = Inst::mov_r_r(OperandSize::Size64, operand, temp);
|
|
i3.emit(&[], sink, info, state);
|
|
}
|
|
RmwOp::Nand => {
|
|
// andq %r_operand, %r_temp
|
|
let i3 =
|
|
Inst::alu_rmi_r(OperandSize::Size64, AluRmiROpcode::And, operand_rmi, temp);
|
|
i3.emit(&[], sink, info, state);
|
|
|
|
// notq %r_temp
|
|
let i4 = Inst::not(OperandSize::Size64, temp);
|
|
i4.emit(&[], sink, info, state);
|
|
}
|
|
RmwOp::Umin | RmwOp::Umax | RmwOp::Smin | RmwOp::Smax => {
|
|
// cmp %r_temp, %r_operand
|
|
let i3 = Inst::cmp_rmi_r(
|
|
OperandSize::from_ty(*ty),
|
|
RegMemImm::reg(temp.to_reg()),
|
|
operand,
|
|
);
|
|
i3.emit(&[], sink, info, state);
|
|
|
|
// cmovcc %r_operand, %r_temp
|
|
let cc = match op {
|
|
RmwOp::Umin => CC::BE,
|
|
RmwOp::Umax => CC::NB,
|
|
RmwOp::Smin => CC::LE,
|
|
RmwOp::Smax => CC::NL,
|
|
_ => unreachable!(),
|
|
};
|
|
let i4 = Inst::cmove(OperandSize::Size64, cc, RegMem::reg(operand), temp);
|
|
i4.emit(&[], sink, info, state);
|
|
}
|
|
_ => {
|
|
// opq %r_operand, %r_temp
|
|
let alu_op = match op {
|
|
RmwOp::Add => AluRmiROpcode::Add,
|
|
RmwOp::Sub => AluRmiROpcode::Sub,
|
|
RmwOp::And => AluRmiROpcode::And,
|
|
RmwOp::Or => AluRmiROpcode::Or,
|
|
RmwOp::Xor => AluRmiROpcode::Xor,
|
|
RmwOp::Xchg
|
|
| RmwOp::Nand
|
|
| RmwOp::Umin
|
|
| RmwOp::Umax
|
|
| RmwOp::Smin
|
|
| RmwOp::Smax => unreachable!(),
|
|
};
|
|
let i3 = Inst::alu_rmi_r(OperandSize::Size64, alu_op, operand_rmi, temp);
|
|
i3.emit(&[], sink, info, state);
|
|
}
|
|
}
|
|
|
|
// lock cmpxchg{b,w,l,q} %r_temp, (%r_address)
|
|
// No need to call `add_trap` here, since the `i4` emit will do that.
|
|
let i4 = Inst::LockCmpxchg {
|
|
ty: *ty,
|
|
replacement: temp.to_reg(),
|
|
expected: dst_old.to_reg(),
|
|
mem: mem.into(),
|
|
dst_old,
|
|
};
|
|
i4.emit(&[], sink, info, state);
|
|
|
|
// jnz again
|
|
one_way_jmp(sink, CC::NZ, again_label);
|
|
}
|
|
|
|
Inst::Fence { kind } => {
|
|
sink.put1(0x0F);
|
|
sink.put1(0xAE);
|
|
match kind {
|
|
FenceKind::MFence => sink.put1(0xF0), // mfence = 0F AE F0
|
|
FenceKind::LFence => sink.put1(0xE8), // lfence = 0F AE E8
|
|
FenceKind::SFence => sink.put1(0xF8), // sfence = 0F AE F8
|
|
}
|
|
}
|
|
|
|
Inst::Hlt => {
|
|
sink.put1(0xcc);
|
|
}
|
|
|
|
Inst::Ud2 { trap_code } => {
|
|
sink.add_trap(*trap_code);
|
|
if let Some(s) = state.take_stack_map() {
|
|
sink.add_stack_map(StackMapExtent::UpcomingBytes(2), s);
|
|
}
|
|
sink.put_data(Inst::TRAP_OPCODE);
|
|
}
|
|
|
|
Inst::VirtualSPOffsetAdj { offset } => {
|
|
trace!(
|
|
"virtual sp offset adjusted by {} -> {}",
|
|
offset,
|
|
state.virtual_sp_offset + offset
|
|
);
|
|
state.virtual_sp_offset += offset;
|
|
}
|
|
|
|
Inst::Nop { len } => {
|
|
// These encodings can all be found in Intel's architecture manual, at the NOP
|
|
// instruction description.
|
|
let mut len = *len;
|
|
while len != 0 {
|
|
let emitted = u8::min(len, 9);
|
|
match emitted {
|
|
0 => {}
|
|
1 => sink.put1(0x90), // NOP
|
|
2 => {
|
|
// 66 NOP
|
|
sink.put1(0x66);
|
|
sink.put1(0x90);
|
|
}
|
|
3 => {
|
|
// NOP [EAX]
|
|
sink.put1(0x0F);
|
|
sink.put1(0x1F);
|
|
sink.put1(0x00);
|
|
}
|
|
4 => {
|
|
// NOP 0(EAX), with 0 a 1-byte immediate.
|
|
sink.put1(0x0F);
|
|
sink.put1(0x1F);
|
|
sink.put1(0x40);
|
|
sink.put1(0x00);
|
|
}
|
|
5 => {
|
|
// NOP [EAX, EAX, 1]
|
|
sink.put1(0x0F);
|
|
sink.put1(0x1F);
|
|
sink.put1(0x44);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
}
|
|
6 => {
|
|
// 66 NOP [EAX, EAX, 1]
|
|
sink.put1(0x66);
|
|
sink.put1(0x0F);
|
|
sink.put1(0x1F);
|
|
sink.put1(0x44);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
}
|
|
7 => {
|
|
// NOP 0[EAX], but 0 is a 4 bytes immediate.
|
|
sink.put1(0x0F);
|
|
sink.put1(0x1F);
|
|
sink.put1(0x80);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
}
|
|
8 => {
|
|
// NOP 0[EAX, EAX, 1], with 0 a 4 bytes immediate.
|
|
sink.put1(0x0F);
|
|
sink.put1(0x1F);
|
|
sink.put1(0x84);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
}
|
|
9 => {
|
|
// 66 NOP 0[EAX, EAX, 1], with 0 a 4 bytes immediate.
|
|
sink.put1(0x66);
|
|
sink.put1(0x0F);
|
|
sink.put1(0x1F);
|
|
sink.put1(0x84);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
sink.put1(0x00);
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
len -= emitted;
|
|
}
|
|
}
|
|
|
|
Inst::ElfTlsGetAddr { ref symbol, dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(dst, regs::rax());
|
|
|
|
// N.B.: Must be exactly this byte sequence; the linker requires it,
|
|
// because it must know how to rewrite the bytes.
|
|
|
|
// data16 lea gv@tlsgd(%rip),%rdi
|
|
sink.put1(0x66); // data16
|
|
sink.put1(0b01001000); // REX.W
|
|
sink.put1(0x8d); // LEA
|
|
sink.put1(0x3d); // ModRM byte
|
|
emit_reloc(sink, Reloc::ElfX86_64TlsGd, symbol, -4);
|
|
sink.put4(0); // offset
|
|
|
|
// data16 data16 callq __tls_get_addr-4
|
|
sink.put1(0x66); // data16
|
|
sink.put1(0x66); // data16
|
|
sink.put1(0b01001000); // REX.W
|
|
sink.put1(0xe8); // CALL
|
|
emit_reloc(
|
|
sink,
|
|
Reloc::X86CallPLTRel4,
|
|
&ExternalName::LibCall(LibCall::ElfTlsGetAddr),
|
|
-4,
|
|
);
|
|
sink.put4(0); // offset
|
|
}
|
|
|
|
Inst::MachOTlsGetAddr { ref symbol, dst } => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(dst, regs::rax());
|
|
|
|
// movq gv@tlv(%rip), %rdi
|
|
sink.put1(0x48); // REX.w
|
|
sink.put1(0x8b); // MOV
|
|
sink.put1(0x3d); // ModRM byte
|
|
emit_reloc(sink, Reloc::MachOX86_64Tlv, symbol, -4);
|
|
sink.put4(0); // offset
|
|
|
|
// callq *(%rdi)
|
|
sink.put1(0xff);
|
|
sink.put1(0x17);
|
|
}
|
|
|
|
Inst::CoffTlsGetAddr {
|
|
ref symbol,
|
|
dst,
|
|
tmp,
|
|
} => {
|
|
let dst = allocs.next(dst.to_reg().to_reg());
|
|
debug_assert_eq!(dst, regs::rax());
|
|
|
|
// tmp is used below directly as %rcx
|
|
let tmp = allocs.next(tmp.to_reg().to_reg());
|
|
debug_assert_eq!(tmp, regs::rcx());
|
|
|
|
// See: https://gcc.godbolt.org/z/M8or9x6ss
|
|
// And: https://github.com/bjorn3/rustc_codegen_cranelift/issues/388#issuecomment-532930282
|
|
|
|
// Emit the following sequence
|
|
// movl (%rip), %eax ; IMAGE_REL_AMD64_REL32 _tls_index
|
|
// movq %gs:88, %rcx
|
|
// movq (%rcx,%rax,8), %rax
|
|
// leaq (%rax), %rax ; Reloc: IMAGE_REL_AMD64_SECREL symbol
|
|
|
|
// Load TLS index for current thread
|
|
// movl (%rip), %eax
|
|
sink.put1(0x8b); // mov
|
|
sink.put1(0x05);
|
|
emit_reloc(
|
|
sink,
|
|
Reloc::X86PCRel4,
|
|
&ExternalName::KnownSymbol(KnownSymbol::CoffTlsIndex),
|
|
-4,
|
|
);
|
|
sink.put4(0); // offset
|
|
|
|
// movq %gs:88, %rcx
|
|
// Load the TLS Storage Array pointer
|
|
// The gs segment register refers to the base address of the TEB on x64.
|
|
// 0x58 is the offset in the TEB for the ThreadLocalStoragePointer member on x64:
|
|
sink.put_data(&[
|
|
0x65, 0x48, // REX.W
|
|
0x8b, // MOV
|
|
0x0c, 0x25, 0x58, // 0x58 - ThreadLocalStoragePointer offset
|
|
0x00, 0x00, 0x00,
|
|
]);
|
|
|
|
// movq (%rcx,%rax,8), %rax
|
|
// Load the actual TLS entry for this thread.
|
|
// Computes ThreadLocalStoragePointer + _tls_index*8
|
|
sink.put_data(&[0x48, 0x8b, 0x04, 0xc1]);
|
|
|
|
// leaq (%rax), %rax
|
|
sink.put1(0x48);
|
|
sink.put1(0x8d);
|
|
sink.put1(0x80);
|
|
emit_reloc(sink, Reloc::X86SecRel, symbol, 0);
|
|
sink.put4(0); // offset
|
|
}
|
|
|
|
Inst::Unwind { ref inst } => {
|
|
sink.add_unwind(inst.clone());
|
|
}
|
|
|
|
Inst::DummyUse { .. } => {
|
|
// Nothing.
|
|
}
|
|
}
|
|
|
|
state.clear_post_insn();
|
|
}
|