Files
wasmtime/cranelift/codegen/src/legalizer/heap.rs
Nick Fitzgerald d335dc8d5a Cranelift: Do not optimize heap bounds checking comparison in legalization (#5272)
That optimization is only for 12-bit immediates in Aarch64, which is now handled
in backend lowering, so we can simplify this code a bit now.
2022-11-15 19:54:52 +00:00

341 lines
12 KiB
Rust

//! Legalization of heaps.
//!
//! This module exports the `expand_heap_addr` function which transforms a `heap_addr`
//! instruction into code that depends on the kind of heap referenced.
use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::condcodes::IntCC;
use crate::ir::immediates::{Uimm32, Uimm8};
use crate::ir::{self, InstBuilder, RelSourceLoc};
use crate::isa::TargetIsa;
use crate::trace;
/// Expand a `heap_addr` instruction according to the definition of the heap.
pub fn expand_heap_addr(
inst: ir::Inst,
func: &mut ir::Function,
cfg: &mut ControlFlowGraph,
isa: &dyn TargetIsa,
heap: ir::Heap,
index_operand: ir::Value,
offset_immediate: Uimm32,
access_size: Uimm8,
) {
trace!(
"expanding heap_addr: {:?}: {}",
inst,
func.dfg.display_inst(inst)
);
match func.heaps[heap].style {
ir::HeapStyle::Dynamic { bound_gv } => dynamic_addr(
isa,
inst,
heap,
index_operand,
u32::from(offset_immediate),
u8::from(access_size),
bound_gv,
func,
),
ir::HeapStyle::Static { bound } => static_addr(
isa,
inst,
heap,
index_operand,
u32::from(offset_immediate),
u8::from(access_size),
bound.into(),
func,
cfg,
),
}
}
/// Expand a `heap_addr` for a dynamic heap.
fn dynamic_addr(
isa: &dyn TargetIsa,
inst: ir::Inst,
heap: ir::Heap,
index: ir::Value,
offset: u32,
access_size: u8,
bound_gv: ir::GlobalValue,
func: &mut ir::Function,
) {
let index_ty = func.dfg.value_type(index);
let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
let min_size = func.heaps[heap].min_size.into();
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
let index = cast_index_to_pointer_ty(index, index_ty, addr_ty, &mut pos);
// Start with the bounds check. Trap if `index + offset + access_size > bound`.
let bound = pos.ins().global_value(addr_ty, bound_gv);
let (cc, lhs, bound) = if offset == 0 && access_size == 1 {
// `index > bound - 1` is the same as `index >= bound`.
(IntCC::UnsignedGreaterThanOrEqual, index, bound)
} else if offset_plus_size(offset, access_size) <= min_size {
// We know that `bound >= min_size`, so here we can compare `offset >
// bound - (offset + access_size)` without wrapping.
let adj_bound = pos
.ins()
.iadd_imm(bound, -(offset_plus_size(offset, access_size) as i64));
trace!(
" inserting: {}",
pos.func.dfg.display_value_inst(adj_bound)
);
(IntCC::UnsignedGreaterThan, index, adj_bound)
} else {
// We need an overflow check for the adjusted offset.
let access_size_val = pos
.ins()
.iconst(addr_ty, offset_plus_size(offset, access_size) as i64);
let adj_offset =
pos.ins()
.uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
trace!(
" inserting: {}",
pos.func.dfg.display_value_inst(adj_offset)
);
(IntCC::UnsignedGreaterThan, adj_offset, bound)
};
let spectre_oob_comparison = if isa.flags().enable_heap_access_spectre_mitigation() {
// When we emit a spectre-guarded heap access, we do a `select
// is_out_of_bounds, NULL, addr` to compute the address, and so the load
// will trap if the address is out of bounds, which means we don't need
// to do another explicit bounds check like we do below.
Some(SpectreOobComparison {
cc,
lhs,
rhs: bound,
})
} else {
let oob = pos.ins().icmp(cc, lhs, bound);
trace!(" inserting: {}", pos.func.dfg.display_value_inst(oob));
let trapnz = pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
trace!(" inserting: {}", pos.func.dfg.display_inst(trapnz));
None
};
compute_addr(
isa,
inst,
heap,
addr_ty,
index,
offset,
pos.func,
spectre_oob_comparison,
);
}
/// Expand a `heap_addr` for a static heap.
fn static_addr(
isa: &dyn TargetIsa,
inst: ir::Inst,
heap: ir::Heap,
index: ir::Value,
offset: u32,
access_size: u8,
bound: u64,
func: &mut ir::Function,
cfg: &mut ControlFlowGraph,
) {
let index_ty = func.dfg.value_type(index);
let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
// The goal here is to trap if `index + offset + access_size > bound`.
//
// This first case is a trivial case where we can statically trap.
if offset_plus_size(offset, access_size) > bound {
// This will simply always trap since `offset >= 0`.
let trap = pos.ins().trap(ir::TrapCode::HeapOutOfBounds);
trace!(" inserting: {}", pos.func.dfg.display_inst(trap));
let iconst = pos.func.dfg.replace(inst).iconst(addr_ty, 0);
trace!(" inserting: {}", pos.func.dfg.display_value_inst(iconst));
// Split the block, as the trap is a terminator instruction.
let curr_block = pos.current_block().expect("Cursor is not in a block");
let new_block = pos.func.dfg.make_block();
pos.insert_block(new_block);
cfg.recompute_block(pos.func, curr_block);
cfg.recompute_block(pos.func, new_block);
return;
}
// After the trivial case is done we're now mostly interested in trapping if
// `index > bound - offset - access_size`. We know `bound - offset -
// access_size` here is non-negative from the above comparison.
//
// If we can know `bound - offset - access_size >= 4GB` then with a 32-bit
// offset we're guaranteed:
//
// bound - offset - access_size >= 4GB > index
//
// or, in other words, `index < bound - offset - access_size`, meaning we
// can't trap for any value of `index`.
//
// With that we have an optimization here where with 32-bit offsets and
// `bound - access_size >= 4GB` we can omit a bounds check.
let limit = bound - offset as u64 - access_size as u64;
let mut spectre_oob_comparison = None;
let index = cast_index_to_pointer_ty(index, index_ty, addr_ty, &mut pos);
if index_ty != ir::types::I32 || limit < 0xffff_ffff {
// Here we want to test the condition `index > limit` and if that's true
// then this is an out-of-bounds access and needs to trap.
let oob = pos
.ins()
.icmp_imm(IntCC::UnsignedGreaterThan, index, limit as i64);
trace!(" inserting: {}", pos.func.dfg.display_value_inst(oob));
let trapnz = pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
trace!(" inserting: {}", pos.func.dfg.display_inst(trapnz));
if isa.flags().enable_heap_access_spectre_mitigation() {
let limit = pos.ins().iconst(addr_ty, limit as i64);
trace!(" inserting: {}", pos.func.dfg.display_value_inst(limit));
spectre_oob_comparison = Some(SpectreOobComparison {
cc: IntCC::UnsignedGreaterThan,
lhs: index,
rhs: limit,
});
}
}
compute_addr(
isa,
inst,
heap,
addr_ty,
index,
offset,
pos.func,
spectre_oob_comparison,
);
}
fn cast_index_to_pointer_ty(
index: ir::Value,
index_ty: ir::Type,
addr_ty: ir::Type,
pos: &mut FuncCursor,
) -> ir::Value {
if index_ty == addr_ty {
return index;
}
// Note that using 64-bit heaps on a 32-bit host is not currently supported,
// would require at least a bounds check here to ensure that the truncation
// from 64-to-32 bits doesn't lose any upper bits. For now though we're
// mostly interested in the 32-bit-heaps-on-64-bit-hosts cast.
assert!(index_ty.bits() < addr_ty.bits());
// Convert `index` to `addr_ty`.
let extended_index = pos.ins().uextend(addr_ty, index);
// Add debug value-label alias so that debuginfo can name the extended
// value as the address
let loc = pos.srcloc();
let loc = RelSourceLoc::from_base_offset(pos.func.params.base_srcloc(), loc);
pos.func
.stencil
.dfg
.add_value_label_alias(extended_index, loc, index);
extended_index
}
struct SpectreOobComparison {
cc: IntCC,
lhs: ir::Value,
rhs: ir::Value,
}
/// Emit code for the base address computation of a `heap_addr` instruction.
fn compute_addr(
isa: &dyn TargetIsa,
inst: ir::Inst,
heap: ir::Heap,
addr_ty: ir::Type,
index: ir::Value,
offset: u32,
func: &mut ir::Function,
// If we are performing Spectre mitigation with conditional selects, the
// values to compare and the condition code that indicates an out-of bounds
// condition; on this condition, the conditional move will choose a
// speculatively safe address (a zero / null pointer) instead.
spectre_oob_comparison: Option<SpectreOobComparison>,
) {
debug_assert_eq!(func.dfg.value_type(index), addr_ty);
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
// Add the heap base address base
let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
let base = pos.ins().get_pinned_reg(isa.pointer_type());
trace!(" inserting: {}", pos.func.dfg.display_value_inst(base));
base
} else {
let base_gv = pos.func.heaps[heap].base;
let base = pos.ins().global_value(addr_ty, base_gv);
trace!(" inserting: {}", pos.func.dfg.display_value_inst(base));
base
};
if let Some(SpectreOobComparison { cc, lhs, rhs }) = spectre_oob_comparison {
let final_base = pos.ins().iadd(base, index);
// NB: The addition of the offset immediate must happen *before* the
// `select_spectre_guard`. If it happens after, then we potentially are
// letting speculative execution read the whole first 4GiB of memory.
let final_addr = if offset == 0 {
final_base
} else {
let final_addr = pos.ins().iadd_imm(final_base, offset as i64);
trace!(
" inserting: {}",
pos.func.dfg.display_value_inst(final_addr)
);
final_addr
};
let zero = pos.ins().iconst(addr_ty, 0);
trace!(" inserting: {}", pos.func.dfg.display_value_inst(zero));
let cmp = pos.ins().icmp(cc, lhs, rhs);
trace!(" inserting: {}", pos.func.dfg.display_value_inst(cmp));
let value = pos
.func
.dfg
.replace(inst)
.select_spectre_guard(cmp, zero, final_addr);
trace!(" inserting: {}", pos.func.dfg.display_value_inst(value));
} else if offset == 0 {
let addr = pos.func.dfg.replace(inst).iadd(base, index);
trace!(" inserting: {}", pos.func.dfg.display_value_inst(addr));
} else {
let final_base = pos.ins().iadd(base, index);
trace!(
" inserting: {}",
pos.func.dfg.display_value_inst(final_base)
);
let addr = pos
.func
.dfg
.replace(inst)
.iadd_imm(final_base, offset as i64);
trace!(" inserting: {}", pos.func.dfg.display_value_inst(addr));
}
}
fn offset_plus_size(offset: u32, size: u8) -> u64 {
// Cannot overflow because we are widening to `u64`.
offset as u64 + size as u64
}