Nick Fitzgerald c82326a1ae peepmatic: Introduce the peepmatic-automata crate
The `peepmatic-automata` crate builds and queries finite-state transducer
automata.

A transducer is a type of automata that has not only an input that it
accepts or rejects, but also an output. While regular automata check whether
an input string is in the set that the automata accepts, a transducer maps
the input strings to values. A regular automata is sort of a compressed,
immutable set, and a transducer is sort of a compressed, immutable key-value
dictionary. A [trie] compresses a set of strings or map from a string to a
value by sharing prefixes of the input string. Automata and transducers can
compress even better: they can share both prefixes and suffixes. [*Index
1,600,000,000 Keys with Automata and Rust* by Andrew Gallant (aka
burntsushi)][burntsushi-blog-post] is a top-notch introduction.

If you're looking for a general-purpose transducers crate in Rust you're
probably looking for [the `fst` crate][fst-crate]. While this implementation
is fully generic and has no dependencies, its feature set is specific to
`peepmatic`'s needs:

* We need to associate extra data with each state: the match operation to
  evaluate next.

* We can't provide the full input string up front, so this crate must
  support incremental lookups. This is because the peephole optimizer is
  computing the input string incrementally and dynamically: it looks at the
  current state's match operation, evaluates it, and then uses the result as
  the next character of the input string.

* We also support incremental insertion and output when building the
  transducer. This is necessary because we don't want to emit output values
  that bind a match on an optimization's left-hand side's pattern (for
  example) until after we've succeeded in matching it, which might not
  happen until we've reached the n^th state.

* We need to support generic output values. The `fst` crate only supports
  `u64` outputs, while we need to build up an optimization's right-hand side
  instructions.

This implementation is based on [*Direct Construction of Minimal Acyclic
Subsequential Transducers* by Mihov and Maurel][paper]. That means that keys
must be inserted in lexicographic order during construction.

[trie]: https://en.wikipedia.org/wiki/Trie
[burntsushi-blog-post]: https://blog.burntsushi.net/transducers/#ordered-maps
[fst-crate]: https://crates.io/crates/fst
[paper]: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.3698&rep=rep1&type=pdf
2020-05-14 07:50:58 -07:00
2020-04-22 15:54:46 -07:00
2020-02-28 09:16:05 -08:00
2019-11-08 17:15:19 -08:00
2020-02-28 09:16:05 -08:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat min rustc Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS with a small install script:

$ curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.

  • Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!.


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%