172 lines
5.7 KiB
Rust
172 lines
5.7 KiB
Rust
//! A Dominator Tree represented as mappings of Ebbs to their immediate dominator.
|
|
|
|
use cfg::*;
|
|
use ir::Ebb;
|
|
use ir::entities::NO_INST;
|
|
use entity_map::EntityMap;
|
|
|
|
/// The dominator tree for a single function.
|
|
pub struct DominatorTree {
|
|
data: EntityMap<Ebb, Option<BasicBlock>>,
|
|
}
|
|
|
|
impl DominatorTree {
|
|
/// Build a dominator tree from a control flow graph using Keith D. Cooper's
|
|
/// "Simple, Fast Dominator Algorithm."
|
|
pub fn new(cfg: &ControlFlowGraph) -> DominatorTree {
|
|
let mut ebbs = cfg.postorder_ebbs();
|
|
ebbs.reverse();
|
|
|
|
let len = ebbs.len();
|
|
|
|
// The mappings which designate the dominator tree.
|
|
let mut data = EntityMap::with_capacity(len);
|
|
|
|
let mut postorder_map = EntityMap::with_capacity(len);
|
|
for (i, ebb) in ebbs.iter().enumerate() {
|
|
postorder_map[ebb.clone()] = len - i;
|
|
}
|
|
|
|
let mut changed = false;
|
|
|
|
if len > 0 {
|
|
data[ebbs[0]] = Some((ebbs[0], NO_INST));
|
|
changed = true;
|
|
}
|
|
|
|
while changed {
|
|
changed = false;
|
|
for i in 1..len {
|
|
let ebb = ebbs[i];
|
|
let preds = cfg.get_predecessors(ebb);
|
|
let mut new_idom = None;
|
|
|
|
for pred in preds {
|
|
if new_idom == None {
|
|
new_idom = Some(pred.clone());
|
|
continue;
|
|
}
|
|
// If this predecessor has an idom available find its common
|
|
// ancestor with the current value of new_idom.
|
|
if let Some(_) = data[pred.0] {
|
|
new_idom = match new_idom {
|
|
Some(cur_idom) => {
|
|
Some((DominatorTree::intersect(&mut data,
|
|
&postorder_map,
|
|
*pred,
|
|
cur_idom)))
|
|
}
|
|
None => panic!("A 'current idom' should have been set!"),
|
|
}
|
|
}
|
|
}
|
|
match data[ebb] {
|
|
None => {
|
|
data[ebb] = new_idom;
|
|
changed = true;
|
|
}
|
|
Some(idom) => {
|
|
// Old idom != New idom
|
|
if idom.0 != new_idom.unwrap().0 {
|
|
data[ebb] = new_idom;
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DominatorTree { data: data }
|
|
}
|
|
|
|
/// Find the common dominator of two ebbs.
|
|
fn intersect(data: &EntityMap<Ebb, Option<BasicBlock>>,
|
|
ordering: &EntityMap<Ebb, usize>,
|
|
first: BasicBlock,
|
|
second: BasicBlock)
|
|
-> BasicBlock {
|
|
let mut a = first;
|
|
let mut b = second;
|
|
|
|
// Here we use 'ordering', a mapping of ebbs to their postorder
|
|
// visitation number, to ensure that we move upward through the tree.
|
|
// Walking upward means that we may always expect self.data[a] and
|
|
// self.data[b] to contain non-None entries.
|
|
while a.0 != b.0 {
|
|
while ordering[a.0] < ordering[b.0] {
|
|
a = data[a.0].unwrap();
|
|
}
|
|
while ordering[b.0] < ordering[a.0] {
|
|
b = data[b.0].unwrap();
|
|
}
|
|
}
|
|
|
|
// TODO: we can't rely on instruction numbers to always be ordered
|
|
// from lowest to highest. Given that, it will be necessary to create
|
|
// an abolute mapping to determine the instruction order in the future.
|
|
if a.1 == NO_INST || a.1 < b.1 { a } else { b }
|
|
}
|
|
|
|
/// Returns the immediate dominator of some ebb or None if the
|
|
/// node is unreachable.
|
|
pub fn idom(&self, ebb: Ebb) -> Option<BasicBlock> {
|
|
self.data[ebb].clone()
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::*;
|
|
use ir::{Function, InstBuilder, Cursor, VariableArgs, types};
|
|
use ir::entities::NO_INST;
|
|
use cfg::ControlFlowGraph;
|
|
|
|
#[test]
|
|
fn empty() {
|
|
let func = Function::new();
|
|
let cfg = ControlFlowGraph::new(&func);
|
|
let dtree = DominatorTree::new(&cfg);
|
|
assert_eq!(0, dtree.data.keys().count());
|
|
}
|
|
|
|
#[test]
|
|
fn non_zero_entry_block() {
|
|
let mut func = Function::new();
|
|
let ebb3 = func.dfg.make_ebb();
|
|
let cond = func.dfg.append_ebb_arg(ebb3, types::I32);
|
|
let ebb1 = func.dfg.make_ebb();
|
|
let ebb2 = func.dfg.make_ebb();
|
|
let ebb0 = func.dfg.make_ebb();
|
|
|
|
let jmp_ebb3_ebb1;
|
|
let br_ebb1_ebb0;
|
|
let jmp_ebb1_ebb2;
|
|
|
|
{
|
|
let dfg = &mut func.dfg;
|
|
let cur = &mut Cursor::new(&mut func.layout);
|
|
|
|
cur.insert_ebb(ebb3);
|
|
jmp_ebb3_ebb1 = dfg.ins(cur).jump(ebb1, VariableArgs::new());
|
|
|
|
cur.insert_ebb(ebb1);
|
|
br_ebb1_ebb0 = dfg.ins(cur).brnz(cond, ebb0, VariableArgs::new());
|
|
jmp_ebb1_ebb2 = dfg.ins(cur).jump(ebb2, VariableArgs::new());
|
|
|
|
cur.insert_ebb(ebb2);
|
|
dfg.ins(cur).jump(ebb0, VariableArgs::new());
|
|
|
|
cur.insert_ebb(ebb0);
|
|
}
|
|
|
|
let cfg = ControlFlowGraph::new(&func);
|
|
let dt = DominatorTree::new(&cfg);
|
|
|
|
assert_eq!(func.layout.entry_block().unwrap(), ebb3);
|
|
assert_eq!(dt.idom(ebb3).unwrap(), (ebb3, NO_INST));
|
|
assert_eq!(dt.idom(ebb1).unwrap(), (ebb3, jmp_ebb3_ebb1));
|
|
assert_eq!(dt.idom(ebb2).unwrap(), (ebb1, jmp_ebb1_ebb2));
|
|
assert_eq!(dt.idom(ebb0).unwrap(), (ebb1, br_ebb1_ebb0));
|
|
}
|
|
}
|