//! A Dominator Tree represented as mappings of Ebbs to their immediate dominator. use cfg::*; use ir::Ebb; use ir::entities::NO_INST; use entity_map::EntityMap; /// The dominator tree for a single function. pub struct DominatorTree { data: EntityMap>, } impl DominatorTree { /// Build a dominator tree from a control flow graph using Keith D. Cooper's /// "Simple, Fast Dominator Algorithm." pub fn new(cfg: &ControlFlowGraph) -> DominatorTree { let mut ebbs = cfg.postorder_ebbs(); ebbs.reverse(); let len = ebbs.len(); // The mappings which designate the dominator tree. let mut data = EntityMap::with_capacity(len); let mut postorder_map = EntityMap::with_capacity(len); for (i, ebb) in ebbs.iter().enumerate() { postorder_map[ebb.clone()] = len - i; } let mut changed = false; if len > 0 { data[ebbs[0]] = Some((ebbs[0], NO_INST)); changed = true; } while changed { changed = false; for i in 1..len { let ebb = ebbs[i]; let preds = cfg.get_predecessors(ebb); let mut new_idom = None; for pred in preds { if new_idom == None { new_idom = Some(pred.clone()); continue; } // If this predecessor has an idom available find its common // ancestor with the current value of new_idom. if let Some(_) = data[pred.0] { new_idom = match new_idom { Some(cur_idom) => { Some((DominatorTree::intersect(&mut data, &postorder_map, *pred, cur_idom))) } None => panic!("A 'current idom' should have been set!"), } } } match data[ebb] { None => { data[ebb] = new_idom; changed = true; } Some(idom) => { // Old idom != New idom if idom.0 != new_idom.unwrap().0 { data[ebb] = new_idom; changed = true; } } } } } DominatorTree { data: data } } /// Find the common dominator of two ebbs. fn intersect(data: &EntityMap>, ordering: &EntityMap, first: BasicBlock, second: BasicBlock) -> BasicBlock { let mut a = first; let mut b = second; // Here we use 'ordering', a mapping of ebbs to their postorder // visitation number, to ensure that we move upward through the tree. // Walking upward means that we may always expect self.data[a] and // self.data[b] to contain non-None entries. while a.0 != b.0 { while ordering[a.0] < ordering[b.0] { a = data[a.0].unwrap(); } while ordering[b.0] < ordering[a.0] { b = data[b.0].unwrap(); } } // TODO: we can't rely on instruction numbers to always be ordered // from lowest to highest. Given that, it will be necessary to create // an abolute mapping to determine the instruction order in the future. if a.1 == NO_INST || a.1 < b.1 { a } else { b } } /// Returns the immediate dominator of some ebb or None if the /// node is unreachable. pub fn idom(&self, ebb: Ebb) -> Option { self.data[ebb].clone() } } #[cfg(test)] mod test { use super::*; use ir::{Function, InstBuilder, Cursor, VariableArgs, types}; use ir::entities::NO_INST; use cfg::ControlFlowGraph; #[test] fn empty() { let func = Function::new(); let cfg = ControlFlowGraph::new(&func); let dtree = DominatorTree::new(&cfg); assert_eq!(0, dtree.data.keys().count()); } #[test] fn non_zero_entry_block() { let mut func = Function::new(); let ebb3 = func.dfg.make_ebb(); let cond = func.dfg.append_ebb_arg(ebb3, types::I32); let ebb1 = func.dfg.make_ebb(); let ebb2 = func.dfg.make_ebb(); let ebb0 = func.dfg.make_ebb(); let jmp_ebb3_ebb1; let br_ebb1_ebb0; let jmp_ebb1_ebb2; { let dfg = &mut func.dfg; let cur = &mut Cursor::new(&mut func.layout); cur.insert_ebb(ebb3); jmp_ebb3_ebb1 = dfg.ins(cur).jump(ebb1, VariableArgs::new()); cur.insert_ebb(ebb1); br_ebb1_ebb0 = dfg.ins(cur).brnz(cond, ebb0, VariableArgs::new()); jmp_ebb1_ebb2 = dfg.ins(cur).jump(ebb2, VariableArgs::new()); cur.insert_ebb(ebb2); dfg.ins(cur).jump(ebb0, VariableArgs::new()); cur.insert_ebb(ebb0); } let cfg = ControlFlowGraph::new(&func); let dt = DominatorTree::new(&cfg); assert_eq!(func.layout.entry_block().unwrap(), ebb3); assert_eq!(dt.idom(ebb3).unwrap(), (ebb3, NO_INST)); assert_eq!(dt.idom(ebb1).unwrap(), (ebb3, jmp_ebb3_ebb1)); assert_eq!(dt.idom(ebb2).unwrap(), (ebb1, jmp_ebb1_ebb2)); assert_eq!(dt.idom(ebb0).unwrap(), (ebb1, br_ebb1_ebb0)); } }