Nick Fitzgerald c0b587ac5f Remove heaps from core Cranelift, push them into cranelift-wasm (#5386)
* cranelift-wasm: translate Wasm loads into lower-level CLIF operations

Rather than using `heap_{load,store,addr}`.

* cranelift: Remove the `heap_{addr,load,store}` instructions

These are now legalized in the `cranelift-wasm` frontend.

* cranelift: Remove the `ir::Heap` entity from CLIF

* Port basic memory operation tests to .wat filetests

* Remove test for verifying CLIF heaps

* Remove `heap_addr` from replace_branching_instructions_and_cfg_predecessors.clif test

* Remove `heap_addr` from readonly.clif test

* Remove `heap_addr` from `table_addr.clif` test

* Remove `heap_addr` from the simd-fvpromote_low.clif test

* Remove `heap_addr` from simd-fvdemote.clif test

* Remove `heap_addr` from the load-op-store.clif test

* Remove the CLIF heap runtest

* Remove `heap_addr` from the global_value.clif test

* Remove `heap_addr` from fpromote.clif runtests

* Remove `heap_addr` from fdemote.clif runtests

* Remove `heap_addr` from memory.clif parser test

* Remove `heap_addr` from reject_load_readonly.clif test

* Remove `heap_addr` from reject_load_notrap.clif test

* Remove `heap_addr` from load_readonly_notrap.clif test

* Remove `static-heap-without-guard-pages.clif` test

Will be subsumed when we port `make-heap-load-store-tests.sh` to generating
`.wat` tests.

* Remove `static-heap-with-guard-pages.clif` test

Will be subsumed when we port `make-heap-load-store-tests.sh` over to `.wat`
tests.

* Remove more heap tests

These will be subsumed by porting `make-heap-load-store-tests.sh` over to `.wat`
tests.

* Remove `heap_addr` from `simple-alias.clif` test

* Remove `heap_addr` from partial-redundancy.clif test

* Remove `heap_addr` from multiple-blocks.clif test

* Remove `heap_addr` from fence.clif test

* Remove `heap_addr` from extends.clif test

* Remove runtests that rely on heaps

Heaps are not a thing in CLIF or the interpreter anymore

* Add generated load/store `.wat` tests

* Enable memory-related wasm features in `.wat` tests

* Remove CLIF heap from fcmp-mem-bug.clif test

* Add a mode for compiling `.wat` all the way to assembly in filetests

* Also generate WAT to assembly tests in `make-load-store-tests.sh`

* cargo fmt

* Reinstate `f{de,pro}mote.clif` tests without the heap bits

* Remove undefined doc link

* Remove outdated SVG and dot file from docs

* Add docs about `None` returns for base address computation helpers

* Factor out `env.heap_access_spectre_mitigation()` to a local

* Expand docs for `FuncEnvironment::heaps` trait method

* Restore f{de,pro}mote+load clif runtests with stack memory
2022-12-15 00:26:45 +00:00
2020-02-28 09:16:05 -08:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat supported rustc stable Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS with a small install script:

curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.

  • Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.

  • Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%