*_unchecked variants of Func APIs for the C API (#3350)
* Add `*_unchecked` variants of `Func` APIs for the C API This commit is what is hopefully going to be my last installment within the saga of optimizing function calls in/out of WebAssembly modules in the C API. This is yet another alternative approach to #3345 (sorry) but also contains everything necessary to make the C API fast. As in #3345 the general idea is just moving checks out of the call path in the same style of `TypedFunc`. This new strategy takes inspiration from previously learned attempts effectively "just" exposes how we previously passed `*mut u128` through trampolines for arguments/results. This storage format is formalized through a new `ValRaw` union that is exposed from the `wasmtime` crate. By doing this it made it relatively easy to expose two new APIs: * `Func::new_unchecked` * `Func::call_unchecked` These are the same as their checked equivalents except that they're `unsafe` and they work with `*mut ValRaw` rather than safe slices of `Val`. Working with these eschews type checks and such and requires callers/embedders to do the right thing. These two new functions are then exposed via the C API with new functions, enabling C to have a fast-path of calling/defining functions. This fast path is akin to `Func::wrap` in Rust, although that API can't be built in C due to C not having generics in the same way that Rust has. For some benchmarks, the benchmarks here are: * `nop` - Call a wasm function from the host that does nothing and returns nothing. * `i64` - Call a wasm function from the host, the wasm function calls a host function, and the host function returns an `i64` all the way out to the original caller. * `many` - Call a wasm function from the host, the wasm calls host function with 5 `i32` parameters, and then an `i64` result is returned back to the original host * `i64` host - just the overhead of the wasm calling the host, so the wasm calls the host function in a loop. * `many` host - same as `i64` host, but calling the `many` host function. All numbers in this table are in nanoseconds, and this is just one measurement as well so there's bound to be some variation in the precise numbers here. | Name | Rust | C (before) | C (after) | |-----------|------|------------|-----------| | nop | 19 | 112 | 25 | | i64 | 22 | 207 | 32 | | many | 27 | 189 | 34 | | i64 host | 2 | 38 | 5 | | many host | 7 | 75 | 8 | The main conclusion here is that the C API is significantly faster than before when using the `*_unchecked` variants of APIs. The Rust implementation is still the ceiling (or floor I guess?) for performance The main reason that C is slower than Rust is that a little bit more has to travel through memory where on the Rust side of things we can monomorphize and inline a bit more to get rid of that. Overall though the costs are way way down from where they were originally and I don't plan on doing a whole lot more myself at this time. There's various things we theoretically could do I've considered but implementation-wise I think they'll be much more weighty. * Tweak `wasmtime_externref_t` API comments
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS with a small install script:
$ curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.
-
Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders or usewasmtimeConan package - [C++] - the
wasmtime-cpprepository or usewasmtime-cppConan package - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!
It's Wasmtime.