Alex Crichton be85242a3f Expose precise offset information in wasmtime::FrameInfo (#1495)
* Consolidate trap/frame information

This commit removes `TrapRegistry` in favor of consolidating this
information in the `FRAME_INFO` we already have in the `wasmtime` crate.
This allows us to keep information generally in one place and have one
canonical location for "map this PC to some original wasm stuff". The
intent for this is to next update with enough information to go from a
program counter to a position in the original wasm file.

* Expose module offset information in `FrameInfo`

This commit implements functionality for `FrameInfo`, the wasm stack
trace of a `Trap`, to return the module/function offset. This allows
knowing the precise wasm location of each stack frame, instead of only
the main trap itself. The intention here is to provide more visibility
into the wasm source when something traps, so you know precisely where
calls were and where traps were, in order to assist in debugging.
Eventually we might use this information for mapping back to native
source languages as well (given sufficient debug information).

This change makes a previously-optional artifact of compilation always
computed on the cranelift side of things. This `ModuleAddressMap` is
then propagated to the same store of information other frame information
is stored within. This also removes the need for passing a `SourceLoc`
with wasm traps or to wasm trap creation, since the backtrace's wasm
frames will be able to infer their own `SourceLoc` from the relevant
program counters.
2020-04-15 08:00:15 -05:00
2020-02-28 09:16:05 -08:00
2019-11-08 17:15:19 -08:00
2020-04-10 13:27:20 -07:00
2020-04-03 13:13:37 -07:00
2020-02-28 09:16:05 -08:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat min rustc Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS with a small install script:

$ curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.

  • Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!.


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%