Files
wasmtime/lib/wasm/src/func_translator.rs
Dan Gohman 5ea6c57b95 Update to the new wasmparser and port to the new readers API.
The new wasmparser API provides dedicated reader types for each section
type, which significantly simplifies the code.

This also changes WasmError::from_binary_reader_error into a From
trait so that we don't have to do .map_err(from_binary_reader_error)
throughout the code.
2018-11-06 15:54:17 -08:00

361 lines
13 KiB
Rust

//! Stand-alone WebAssembly to Cranelift IR translator.
//!
//! This module defines the `FuncTranslator` type which can translate a single WebAssembly
//! function to Cranelift IR guided by a `FuncEnvironment` which provides information about the
//! WebAssembly module and the runtime environment.
use code_translator::translate_operator;
use cranelift_codegen::entity::EntityRef;
use cranelift_codegen::ir::{self, Ebb, InstBuilder};
use cranelift_codegen::timing;
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext, Variable};
use environ::{FuncEnvironment, ReturnMode, WasmResult};
use state::TranslationState;
use wasmparser::{self, BinaryReader};
/// WebAssembly to Cranelift IR function translator.
///
/// A `FuncTranslator` is used to translate a binary WebAssembly function into Cranelift IR guided
/// by a `FuncEnvironment` object. A single translator instance can be reused to translate multiple
/// functions which will reduce heap allocation traffic.
pub struct FuncTranslator {
func_ctx: FunctionBuilderContext,
state: TranslationState,
}
impl FuncTranslator {
/// Create a new translator.
pub fn new() -> Self {
Self {
func_ctx: FunctionBuilderContext::new(),
state: TranslationState::new(),
}
}
/// Translate a binary WebAssembly function.
///
/// The `code` slice contains the binary WebAssembly *function code* as it appears in the code
/// section of a WebAssembly module, not including the initial size of the function code. The
/// slice is expected to contain two parts:
///
/// - The declaration of *locals*, and
/// - The function *body* as an expression.
///
/// See [the WebAssembly specification][wasm].
///
/// [wasm]: https://webassembly.github.io/spec/binary/modules.html#code-section
///
/// The Cranelift IR function `func` should be completely empty except for the `func.signature`
/// and `func.name` fields. The signature may contain special-purpose arguments which are not
/// regarded as WebAssembly local variables. Any signature arguments marked as
/// `ArgumentPurpose::Normal` are made accessible as WebAssembly local variables.
///
pub fn translate<FE: FuncEnvironment + ?Sized>(
&mut self,
code: &[u8],
func: &mut ir::Function,
environ: &mut FE,
) -> WasmResult<()> {
self.translate_from_reader(BinaryReader::new(code), func, environ)
}
/// Translate a binary WebAssembly function from a `BinaryReader`.
pub fn translate_from_reader<FE: FuncEnvironment + ?Sized>(
&mut self,
mut reader: BinaryReader,
func: &mut ir::Function,
environ: &mut FE,
) -> WasmResult<()> {
let _tt = timing::wasm_translate_function();
info!(
"translate({} bytes, {}{})",
reader.bytes_remaining(),
func.name,
func.signature
);
debug_assert_eq!(func.dfg.num_ebbs(), 0, "Function must be empty");
debug_assert_eq!(func.dfg.num_insts(), 0, "Function must be empty");
// This clears the `FunctionBuilderContext`.
let mut builder = FunctionBuilder::new(func, &mut self.func_ctx);
let entry_block = builder.create_ebb();
builder.append_ebb_params_for_function_params(entry_block);
builder.switch_to_block(entry_block); // This also creates values for the arguments.
builder.seal_block(entry_block);
// Make sure the entry block is inserted in the layout before we make any callbacks to
// `environ`. The callback functions may need to insert things in the entry block.
builder.ensure_inserted_ebb();
let num_params = declare_wasm_parameters(&mut builder, entry_block);
// Set up the translation state with a single pushed control block representing the whole
// function and its return values.
let exit_block = builder.create_ebb();
builder.append_ebb_params_for_function_returns(exit_block);
self.state.initialize(&builder.func.signature, exit_block);
parse_local_decls(&mut reader, &mut builder, num_params)?;
parse_function_body(reader, &mut builder, &mut self.state, environ)?;
builder.finalize();
Ok(())
}
}
/// Declare local variables for the signature parameters that correspond to WebAssembly locals.
///
/// Return the number of local variables declared.
fn declare_wasm_parameters(builder: &mut FunctionBuilder, entry_block: Ebb) -> usize {
let sig_len = builder.func.signature.params.len();
let mut next_local = 0;
for i in 0..sig_len {
let param_type = builder.func.signature.params[i];
// There may be additional special-purpose parameters following the normal WebAssembly
// signature parameters. For example, a `vmctx` pointer.
if param_type.purpose == ir::ArgumentPurpose::Normal {
// This is a normal WebAssembly signature parameter, so create a local for it.
let local = Variable::new(next_local);
builder.declare_var(local, param_type.value_type);
next_local += 1;
let param_value = builder.ebb_params(entry_block)[i];
builder.def_var(local, param_value);
}
}
next_local
}
/// Parse the local variable declarations that precede the function body.
///
/// Declare local variables, starting from `num_params`.
fn parse_local_decls(
reader: &mut BinaryReader,
builder: &mut FunctionBuilder,
num_params: usize,
) -> WasmResult<()> {
let mut next_local = num_params;
let local_count = reader.read_local_count()?;
let mut locals_total = 0;
for _ in 0..local_count {
builder.set_srcloc(cur_srcloc(reader));
let (count, ty) = reader.read_local_decl(&mut locals_total)?;
declare_locals(builder, count, ty, &mut next_local);
}
Ok(())
}
/// Declare `count` local variables of the same type, starting from `next_local`.
///
/// Fail of too many locals are declared in the function, or if the type is not valid for a local.
fn declare_locals(
builder: &mut FunctionBuilder,
count: u32,
wasm_type: wasmparser::Type,
next_local: &mut usize,
) {
// All locals are initialized to 0.
use wasmparser::Type::*;
let zeroval = match wasm_type {
I32 => builder.ins().iconst(ir::types::I32, 0),
I64 => builder.ins().iconst(ir::types::I64, 0),
F32 => builder.ins().f32const(ir::immediates::Ieee32::with_bits(0)),
F64 => builder.ins().f64const(ir::immediates::Ieee64::with_bits(0)),
_ => panic!("invalid local type"),
};
let ty = builder.func.dfg.value_type(zeroval);
for _ in 0..count {
let local = Variable::new(*next_local);
builder.declare_var(local, ty);
builder.def_var(local, zeroval);
*next_local += 1;
}
}
/// Parse the function body in `reader`.
///
/// This assumes that the local variable declarations have already been parsed and function
/// arguments and locals are declared in the builder.
fn parse_function_body<FE: FuncEnvironment + ?Sized>(
mut reader: BinaryReader,
builder: &mut FunctionBuilder,
state: &mut TranslationState,
environ: &mut FE,
) -> WasmResult<()> {
// The control stack is initialized with a single block representing the whole function.
debug_assert_eq!(state.control_stack.len(), 1, "State not initialized");
// Keep going until the final `End` operator which pops the outermost block.
while !state.control_stack.is_empty() {
builder.set_srcloc(cur_srcloc(&reader));
let op = reader.read_operator()?;
translate_operator(op, builder, state, environ)?;
}
// The final `End` operator left us in the exit block where we need to manually add a return
// instruction.
//
// If the exit block is unreachable, it may not have the correct arguments, so we would
// generate a return instruction that doesn't match the signature.
if state.reachable {
debug_assert!(builder.is_pristine());
if !builder.is_unreachable() {
match environ.return_mode() {
ReturnMode::NormalReturns => builder.ins().return_(&state.stack),
ReturnMode::FallthroughReturn => builder.ins().fallthrough_return(&state.stack),
};
}
}
// Discard any remaining values on the stack. Either we just returned them,
// or the end of the function is unreachable.
state.stack.clear();
debug_assert!(reader.eof());
Ok(())
}
/// Get the current source location from a reader.
fn cur_srcloc(reader: &BinaryReader) -> ir::SourceLoc {
// We record source locations as byte code offsets relative to the beginning of the function.
// This will wrap around of a single function's byte code is larger than 4 GB, but a) the
// WebAssembly format doesn't allow for that, and b) that would hit other Cranelift
// implementation limits anyway.
ir::SourceLoc::new(reader.current_position() as u32)
}
#[cfg(test)]
mod tests {
use super::{FuncTranslator, ReturnMode};
use cranelift_codegen::ir::types::I32;
use cranelift_codegen::{ir, isa, settings, Context};
use environ::DummyEnvironment;
use target_lexicon::PointerWidth;
#[test]
fn small1() {
// Implicit return.
//
// (func $small1 (param i32) (result i32)
// (i32.add (get_local 0) (i32.const 1))
// )
const BODY: [u8; 7] = [
0x00, // local decl count
0x20, 0x00, // get_local 0
0x41, 0x01, // i32.const 1
0x6a, // i32.add
0x0b, // end
];
let mut trans = FuncTranslator::new();
let flags = settings::Flags::new(settings::builder());
let runtime = DummyEnvironment::new(
isa::TargetFrontendConfig {
default_call_conv: isa::CallConv::Fast,
pointer_width: PointerWidth::U64,
},
ReturnMode::NormalReturns,
);
let mut ctx = Context::new();
ctx.func.name = ir::ExternalName::testcase("small1");
ctx.func.signature.params.push(ir::AbiParam::new(I32));
ctx.func.signature.returns.push(ir::AbiParam::new(I32));
trans
.translate(&BODY, &mut ctx.func, &mut runtime.func_env())
.unwrap();
debug!("{}", ctx.func.display(None));
ctx.verify(&flags).unwrap();
}
#[test]
fn small2() {
// Same as above, but with an explicit return instruction.
//
// (func $small2 (param i32) (result i32)
// (return (i32.add (get_local 0) (i32.const 1)))
// )
const BODY: [u8; 8] = [
0x00, // local decl count
0x20, 0x00, // get_local 0
0x41, 0x01, // i32.const 1
0x6a, // i32.add
0x0f, // return
0x0b, // end
];
let mut trans = FuncTranslator::new();
let flags = settings::Flags::new(settings::builder());
let runtime = DummyEnvironment::new(
isa::TargetFrontendConfig {
default_call_conv: isa::CallConv::Fast,
pointer_width: PointerWidth::U64,
},
ReturnMode::NormalReturns,
);
let mut ctx = Context::new();
ctx.func.name = ir::ExternalName::testcase("small2");
ctx.func.signature.params.push(ir::AbiParam::new(I32));
ctx.func.signature.returns.push(ir::AbiParam::new(I32));
trans
.translate(&BODY, &mut ctx.func, &mut runtime.func_env())
.unwrap();
debug!("{}", ctx.func.display(None));
ctx.verify(&flags).unwrap();
}
#[test]
fn infloop() {
// An infinite loop, no return instructions.
//
// (func $infloop (result i32)
// (local i32)
// (loop (result i32)
// (i32.add (get_local 0) (i32.const 1))
// (set_local 0)
// (br 0)
// )
// )
const BODY: [u8; 16] = [
0x01, // 1 local decl.
0x01, 0x7f, // 1 i32 local.
0x03, 0x7f, // loop i32
0x20, 0x00, // get_local 0
0x41, 0x01, // i32.const 0
0x6a, // i32.add
0x21, 0x00, // set_local 0
0x0c, 0x00, // br 0
0x0b, // end
0x0b, // end
];
let mut trans = FuncTranslator::new();
let flags = settings::Flags::new(settings::builder());
let runtime = DummyEnvironment::new(
isa::TargetFrontendConfig {
default_call_conv: isa::CallConv::Fast,
pointer_width: PointerWidth::U64,
},
ReturnMode::NormalReturns,
);
let mut ctx = Context::new();
ctx.func.name = ir::ExternalName::testcase("infloop");
ctx.func.signature.returns.push(ir::AbiParam::new(I32));
trans
.translate(&BODY, &mut ctx.func, &mut runtime.func_env())
.unwrap();
debug!("{}", ctx.func.display(None));
ctx.verify(&flags).unwrap();
}
}