* Cranelift: Use bump allocation in `remove_constant_phis` pass This makes compilation 2-6% faster for Sightglass's bz2 benchmark: ``` compilation :: cycles :: benchmarks/bz2/benchmark.wasm Δ = 7290648.36 ± 4245152.07 (confidence = 99%) bump.so is 1.02x to 1.06x faster than main.so! [166388177 183238542.98 214732518] bump.so [172836648 190529191.34 217514271] main.so compilation :: cycles :: benchmarks/pulldown-cmark/benchmark.wasm No difference in performance. [182220055 225793551.12 277857575] bump.so [193212613 227784078.61 277175335] main.so compilation :: cycles :: benchmarks/spidermonkey/benchmark.wasm No difference in performance. [3848442474 4295214144.37 4665127241] bump.so [3969505457 4262415290.10 4563869974] main.so ``` * Add audit for `bumpalo` * Add an audit of `arrayvec` version 0.7.2 * Remove unnecessary `collect` into `Vec` I wasn't able to measure any perf difference here, but its nice to do anyways. * Use a `SecondaryMap` for keeping track of summaries
426 lines
16 KiB
Rust
426 lines
16 KiB
Rust
//! A Constant-Phi-Node removal pass.
|
|
|
|
use crate::dominator_tree::DominatorTree;
|
|
use crate::entity::EntityList;
|
|
use crate::fx::FxHashMap;
|
|
use crate::fx::FxHashSet;
|
|
use crate::ir;
|
|
use crate::ir::instructions::BranchInfo;
|
|
use crate::ir::Function;
|
|
use crate::ir::{Block, Inst, Value};
|
|
use crate::timing;
|
|
use arrayvec::ArrayVec;
|
|
use bumpalo::Bump;
|
|
use cranelift_entity::SecondaryMap;
|
|
use smallvec::SmallVec;
|
|
|
|
// A note on notation. For the sake of clarity, this file uses the phrase
|
|
// "formal parameters" to mean the `Value`s listed in the block head, and
|
|
// "actual parameters" to mean the `Value`s passed in a branch or a jump:
|
|
//
|
|
// block4(v16: i32, v18: i32): <-- formal parameters
|
|
// ...
|
|
// brnz v27, block7(v22, v24) <-- actual parameters
|
|
// jump block6
|
|
|
|
// This transformation pass (conceptually) partitions all values in the
|
|
// function into two groups:
|
|
//
|
|
// * Group A: values defined by block formal parameters, except for the entry block.
|
|
//
|
|
// * Group B: All other values: that is, values defined by instructions,
|
|
// and the formals of the entry block.
|
|
//
|
|
// For each value in Group A, it attempts to establish whether it will have
|
|
// the value of exactly one member of Group B. If so, the formal parameter is
|
|
// deleted, all corresponding actual parameters (in jumps/branches to the
|
|
// defining block) are deleted, and a rename is inserted.
|
|
//
|
|
// The entry block is special-cased because (1) we don't know what values flow
|
|
// to its formals and (2) in any case we can't change its formals.
|
|
//
|
|
// Work proceeds in three phases.
|
|
//
|
|
// * Phase 1: examine all instructions. For each block, make up a useful
|
|
// grab-bag of information, `BlockSummary`, that summarises the block's
|
|
// formals and jump/branch instruction. This is used by Phases 2 and 3.
|
|
//
|
|
// * Phase 2: for each value in Group A, try to find a single Group B value
|
|
// that flows to it. This is done using a classical iterative forward
|
|
// dataflow analysis over a simple constant-propagation style lattice. It
|
|
// converges quickly in practice -- I have seen at most 4 iterations. This
|
|
// is relatively cheap because the iteration is done over the
|
|
// `BlockSummary`s, and does not visit each instruction. The resulting
|
|
// fixed point is stored in a `SolverState`.
|
|
//
|
|
// * Phase 3: using the `SolverState` and `BlockSummary`, edit the function to
|
|
// remove redundant formals and actuals, and to insert suitable renames.
|
|
//
|
|
// Note that the effectiveness of the analysis depends on on the fact that
|
|
// there are no copy instructions in Cranelift's IR. If there were, the
|
|
// computation of `actual_absval` in Phase 2 would have to be extended to
|
|
// chase through such copies.
|
|
//
|
|
// For large functions, the analysis cost using the new AArch64 backend is about
|
|
// 0.6% of the non-optimising compile time, as measured by instruction counts.
|
|
// This transformation usually pays for itself several times over, though, by
|
|
// reducing the isel/regalloc cost downstream. Gains of up to 7% have been
|
|
// seen for large functions.
|
|
|
|
/// The `Value`s (Group B) that can flow to a formal parameter (Group A).
|
|
#[derive(Clone, Copy, Debug, PartialEq)]
|
|
enum AbstractValue {
|
|
/// Two or more values flow to this formal.
|
|
Many,
|
|
|
|
/// Exactly one value, as stated, flows to this formal. The `Value`s that
|
|
/// can appear here are exactly: `Value`s defined by `Inst`s, plus the
|
|
/// `Value`s defined by the formals of the entry block. Note that this is
|
|
/// exactly the set of `Value`s that are *not* tracked in the solver below
|
|
/// (see `SolverState`).
|
|
One(Value /*Group B*/),
|
|
|
|
/// No value flows to this formal.
|
|
None,
|
|
}
|
|
|
|
impl AbstractValue {
|
|
fn join(self, other: AbstractValue) -> AbstractValue {
|
|
match (self, other) {
|
|
// Joining with `None` has no effect
|
|
(AbstractValue::None, p2) => p2,
|
|
(p1, AbstractValue::None) => p1,
|
|
// Joining with `Many` produces `Many`
|
|
(AbstractValue::Many, _p2) => AbstractValue::Many,
|
|
(_p1, AbstractValue::Many) => AbstractValue::Many,
|
|
// The only interesting case
|
|
(AbstractValue::One(v1), AbstractValue::One(v2)) => {
|
|
if v1 == v2 {
|
|
AbstractValue::One(v1)
|
|
} else {
|
|
AbstractValue::Many
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn is_one(self) -> bool {
|
|
matches!(self, AbstractValue::One(_))
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
struct OutEdge<'a> {
|
|
/// An instruction that transfers control.
|
|
inst: Inst,
|
|
/// The block that control is transferred to.
|
|
block: Block,
|
|
/// The arguments to that block.
|
|
///
|
|
/// These values can be from both groups A and B.
|
|
args: &'a [Value],
|
|
}
|
|
|
|
impl<'a> OutEdge<'a> {
|
|
/// Construct a new `OutEdge` for the given instruction.
|
|
///
|
|
/// Returns `None` if this is an edge without any block arguments, which
|
|
/// means we can ignore it for this analysis's purposes.
|
|
#[inline]
|
|
fn new(bump: &'a Bump, dfg: &ir::DataFlowGraph, inst: Inst, block: Block) -> Option<Self> {
|
|
let inst_var_args = dfg.inst_variable_args(inst);
|
|
|
|
// Skip edges without params.
|
|
if inst_var_args.is_empty() {
|
|
return None;
|
|
}
|
|
|
|
Some(OutEdge {
|
|
inst,
|
|
block,
|
|
args: bump.alloc_slice_fill_iter(
|
|
inst_var_args
|
|
.iter()
|
|
.map(|value| dfg.resolve_aliases(*value)),
|
|
),
|
|
})
|
|
}
|
|
}
|
|
|
|
/// For some block, a useful bundle of info. The `Block` itself is not stored
|
|
/// here since it will be the key in the associated `FxHashMap` -- see
|
|
/// `summaries` below. For the `SmallVec` tuning params: most blocks have
|
|
/// few parameters, hence `4`. And almost all blocks have either one or two
|
|
/// successors, hence `2`.
|
|
#[derive(Clone, Debug, Default)]
|
|
struct BlockSummary<'a> {
|
|
/// Formal parameters for this `Block`.
|
|
///
|
|
/// These values are from group A.
|
|
formals: &'a [Value],
|
|
|
|
/// Each outgoing edge from this block.
|
|
///
|
|
/// We don't bother to include transfers that pass zero parameters
|
|
/// since that makes more work for the solver for no purpose.
|
|
///
|
|
/// Note that, because blocks used with `br_table`s cannot have block
|
|
/// arguments, there are at most two outgoing edges from these blocks.
|
|
dests: ArrayVec<OutEdge<'a>, 2>,
|
|
}
|
|
|
|
impl<'a> BlockSummary<'a> {
|
|
/// Construct a new `BlockSummary`, using `values` as its backing storage.
|
|
#[inline]
|
|
fn new(bump: &'a Bump, formals: &[Value]) -> Self {
|
|
Self {
|
|
formals: bump.alloc_slice_copy(formals),
|
|
dests: Default::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Solver state. This holds a AbstractValue for each formal parameter, except
|
|
/// for those from the entry block.
|
|
struct SolverState {
|
|
absvals: FxHashMap<Value /*Group A*/, AbstractValue>,
|
|
}
|
|
|
|
impl SolverState {
|
|
fn new() -> Self {
|
|
Self {
|
|
absvals: FxHashMap::default(),
|
|
}
|
|
}
|
|
|
|
fn get(&self, actual: Value) -> AbstractValue {
|
|
*self
|
|
.absvals
|
|
.get(&actual)
|
|
.unwrap_or_else(|| panic!("SolverState::get: formal param {:?} is untracked?!", actual))
|
|
}
|
|
|
|
fn maybe_get(&self, actual: Value) -> Option<&AbstractValue> {
|
|
self.absvals.get(&actual)
|
|
}
|
|
|
|
fn set(&mut self, actual: Value, lp: AbstractValue) {
|
|
match self.absvals.insert(actual, lp) {
|
|
Some(_old_lp) => {}
|
|
None => panic!("SolverState::set: formal param {:?} is untracked?!", actual),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Detect phis in `func` that will only ever produce one value, using a
|
|
/// classic forward dataflow analysis. Then remove them.
|
|
#[inline(never)]
|
|
pub fn do_remove_constant_phis(func: &mut Function, domtree: &mut DominatorTree) {
|
|
let _tt = timing::remove_constant_phis();
|
|
debug_assert!(domtree.is_valid());
|
|
|
|
// Phase 1 of 3: for each block, make a summary containing all relevant
|
|
// info. The solver will iterate over the summaries, rather than having
|
|
// to inspect each instruction in each block.
|
|
let bump =
|
|
Bump::with_capacity(domtree.cfg_postorder().len() * 4 * std::mem::size_of::<Value>());
|
|
let mut summaries =
|
|
SecondaryMap::<Block, BlockSummary>::with_capacity(domtree.cfg_postorder().len());
|
|
|
|
for b in domtree.cfg_postorder().iter().rev().copied() {
|
|
let formals = func.dfg.block_params(b);
|
|
let mut summary = BlockSummary::new(&bump, formals);
|
|
|
|
for inst in func.layout.block_insts(b) {
|
|
let idetails = &func.dfg[inst];
|
|
// Note that multi-dest transfers (i.e., branch tables) don't
|
|
// carry parameters in our IR, so we only have to care about
|
|
// `SingleDest` here.
|
|
if let BranchInfo::SingleDest(dest, _) = idetails.analyze_branch(&func.dfg.value_lists)
|
|
{
|
|
if let Some(edge) = OutEdge::new(&bump, &func.dfg, inst, dest) {
|
|
summary.dests.push(edge);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ensure the invariant that all blocks (except for the entry) appear
|
|
// in the summary, *unless* they have neither formals nor any
|
|
// param-carrying branches/jumps.
|
|
if formals.len() > 0 || summary.dests.len() > 0 {
|
|
summaries[b] = summary;
|
|
}
|
|
}
|
|
|
|
// Phase 2 of 3: iterate over the summaries in reverse postorder,
|
|
// computing new `AbstractValue`s for each tracked `Value`. The set of
|
|
// tracked `Value`s is exactly Group A as described above.
|
|
|
|
let entry_block = func
|
|
.layout
|
|
.entry_block()
|
|
.expect("remove_constant_phis: entry block unknown");
|
|
|
|
// Set up initial solver state
|
|
let mut state = SolverState::new();
|
|
|
|
for b in domtree.cfg_postorder().iter().rev().copied() {
|
|
// For each block, get the formals
|
|
if b == entry_block {
|
|
continue;
|
|
}
|
|
let formals = func.dfg.block_params(b);
|
|
for formal in formals {
|
|
let mb_old_absval = state.absvals.insert(*formal, AbstractValue::None);
|
|
assert!(mb_old_absval.is_none());
|
|
}
|
|
}
|
|
|
|
// Solve: repeatedly traverse the blocks in reverse postorder, until there
|
|
// are no changes.
|
|
let mut iter_no = 0;
|
|
loop {
|
|
iter_no += 1;
|
|
let mut changed = false;
|
|
|
|
for src in domtree.cfg_postorder().iter().rev().copied() {
|
|
let src_summary = &summaries[src];
|
|
for edge in &src_summary.dests {
|
|
assert!(edge.block != entry_block);
|
|
// By contrast, the dst block must have a summary. Phase 1
|
|
// will have only included an entry in `src_summary.dests` if
|
|
// that branch/jump carried at least one parameter. So the
|
|
// dst block does take parameters, so it must have a summary.
|
|
let dst_summary = &summaries[edge.block];
|
|
let dst_formals = &dst_summary.formals;
|
|
assert_eq!(edge.args.len(), dst_formals.len());
|
|
for (formal, actual) in dst_formals.iter().zip(edge.args) {
|
|
// Find the abstract value for `actual`. If it is a block
|
|
// formal parameter then the most recent abstract value is
|
|
// to be found in the solver state. If not, then it's a
|
|
// real value defining point (not a phi), in which case
|
|
// return it itself.
|
|
let actual_absval = match state.maybe_get(*actual) {
|
|
Some(pt) => *pt,
|
|
None => AbstractValue::One(*actual),
|
|
};
|
|
|
|
// And `join` the new value with the old.
|
|
let formal_absval_old = state.get(*formal);
|
|
let formal_absval_new = formal_absval_old.join(actual_absval);
|
|
if formal_absval_new != formal_absval_old {
|
|
changed = true;
|
|
state.set(*formal, formal_absval_new);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if !changed {
|
|
break;
|
|
}
|
|
}
|
|
|
|
let mut n_consts = 0;
|
|
for absval in state.absvals.values() {
|
|
if absval.is_one() {
|
|
n_consts += 1;
|
|
}
|
|
}
|
|
|
|
// Phase 3 of 3: edit the function to remove constant formals, using the
|
|
// summaries and the final solver state as a guide.
|
|
|
|
// Make up a set of blocks that need editing.
|
|
let mut need_editing = FxHashSet::<Block>::default();
|
|
for (block, summary) in summaries.iter() {
|
|
if block == entry_block {
|
|
continue;
|
|
}
|
|
for formal in summary.formals {
|
|
let formal_absval = state.get(*formal);
|
|
if formal_absval.is_one() {
|
|
need_editing.insert(block);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Firstly, deal with the formals. For each formal which is redundant,
|
|
// remove it, and also add a reroute from it to the constant value which
|
|
// it we know it to be.
|
|
for b in &need_editing {
|
|
let mut del_these = SmallVec::<[(Value, Value); 32]>::new();
|
|
let formals: &[Value] = func.dfg.block_params(*b);
|
|
for formal in formals {
|
|
// The state must give an absval for `formal`.
|
|
if let AbstractValue::One(replacement_val) = state.get(*formal) {
|
|
del_these.push((*formal, replacement_val));
|
|
}
|
|
}
|
|
// We can delete the formals in any order. However,
|
|
// `remove_block_param` works by sliding backwards all arguments to
|
|
// the right of the value it is asked to delete. Hence when removing more
|
|
// than one formal, it is significantly more efficient to ask it to
|
|
// remove the rightmost formal first, and hence this `rev()`.
|
|
for (redundant_formal, replacement_val) in del_these.into_iter().rev() {
|
|
func.dfg.remove_block_param(redundant_formal);
|
|
func.dfg.change_to_alias(redundant_formal, replacement_val);
|
|
}
|
|
}
|
|
|
|
// Secondly, visit all branch insns. If the destination has had its
|
|
// formals changed, change the actuals accordingly. Don't scan all insns,
|
|
// rather just visit those as listed in the summaries we prepared earlier.
|
|
for summary in summaries.values() {
|
|
for edge in &summary.dests {
|
|
if !need_editing.contains(&edge.block) {
|
|
continue;
|
|
}
|
|
|
|
let old_actuals = func.dfg[edge.inst].take_value_list().unwrap();
|
|
let num_old_actuals = old_actuals.len(&func.dfg.value_lists);
|
|
let num_fixed_actuals = func.dfg[edge.inst]
|
|
.opcode()
|
|
.constraints()
|
|
.num_fixed_value_arguments();
|
|
let dst_summary = &summaries[edge.block];
|
|
|
|
// Check that the numbers of arguments make sense.
|
|
assert!(num_fixed_actuals <= num_old_actuals);
|
|
assert_eq!(
|
|
num_fixed_actuals + dst_summary.formals.len(),
|
|
num_old_actuals
|
|
);
|
|
|
|
// Create a new value list.
|
|
let mut new_actuals = EntityList::<Value>::new();
|
|
// Copy the fixed args to the new list
|
|
for i in 0..num_fixed_actuals {
|
|
let val = old_actuals.get(i, &func.dfg.value_lists).unwrap();
|
|
new_actuals.push(val, &mut func.dfg.value_lists);
|
|
}
|
|
|
|
// Copy the variable args (the actual block params) to the new
|
|
// list, filtering out redundant ones.
|
|
for (i, formal_i) in dst_summary.formals.iter().enumerate() {
|
|
let actual_i = old_actuals
|
|
.get(num_fixed_actuals + i, &func.dfg.value_lists)
|
|
.unwrap();
|
|
let is_redundant = state.get(*formal_i).is_one();
|
|
if !is_redundant {
|
|
new_actuals.push(actual_i, &mut func.dfg.value_lists);
|
|
}
|
|
}
|
|
func.dfg[edge.inst].put_value_list(new_actuals);
|
|
}
|
|
}
|
|
|
|
log::debug!(
|
|
"do_remove_constant_phis: done, {} iters. {} formals, of which {} const.",
|
|
iter_no,
|
|
state.absvals.len(),
|
|
n_consts
|
|
);
|
|
}
|