Nick Fitzgerald a2f846f124 Don't re-capture backtraces when propagating traps through host frames (#5049)
* Add a benchmark for traps with many Wasm<-->host calls on the stack

* Add a test for expected Wasm stack traces with Wasm<--host calls on the stack when we trap

* Don't re-capture backtraces when propagating traps through host frames

This fixes some accidentally quadratic code where we would re-capture a Wasm
stack trace (takes `O(n)` time) every time we propagated a trap through a host
frame back to Wasm (can happen `O(n)` times). And `O(n) * O(n) = O(n^2)`, of
course. Whoops. After this commit, it trapping with a call stack that is `n`
frames deep of Wasm-to-host-to-Wasm calls just captures a single backtrace and
is therefore just a proper `O(n)` time operation, as it is intended to be.

Now we explicitly track whether we need to capture a Wasm backtrace or not when
raising a trap. This unfortunately isn't as straightforward as one might hope,
however, because of the split between `wasmtime::Trap` and
`wasmtime_runtime::Trap`. We need to decide whether or not to capture a Wasm
backtrace inside `wasmtime_runtime` but in order to determine whether to do that
or not we need to reflect on the `anyhow::Error` and see if it is a
`wasmtime::Trap` that already has a backtrace or not. This can't be done the
straightforward way because it would introduce a cyclic dependency between the
`wasmtime` and `wasmtime-runtime` crates. We can't merge those two `Trap`
types-- at least not without effectively merging the whole `wasmtime` and
`wasmtime-runtime` crates together, which would be a good idea in a perfect
world but would be a *ton* of ocean boiling from where we currently are --
because `wasmtime::Trap` does symbolication of stack traces which relies on
module registration information data that resides inside the `wasmtime` crate
and therefore can't be moved into `wasmtime-runtime`. We resolve this problem by
adding a boolean to `wasmtime_runtime::raise_user_trap` that controls whether we
should capture a Wasm backtrace or not, and then determine whether we need a
backtrace or not at each of that function's call sites, which are in `wasmtime`
and therefore can do the reflection to determine whether the user trap already
has a backtrace or not. Phew!

Fixes #5037

* debug assert that we don't record unnecessary backtraces for traps

* Add assertions around `needs_backtrace`

Unfortunately we can't do

    debug_assert_eq!(needs_backtrace, trap.inner.backtrace.get().is_some());

because `needs_backtrace` doesn't consider whether Wasm backtraces have been
disabled via config.

* Consolidate `needs_backtrace` calculation followed by calling `raise_user_trap` into one place
2022-10-13 07:22:46 -07:00
2022-10-12 15:39:39 +00:00
2022-09-23 00:19:56 +00:00
2022-09-28 17:04:17 +00:00
2020-02-28 09:16:05 -08:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat supported rustc stable Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS with a small install script:

curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.

  • Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.

  • Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%