* Reimplement the pooling instance allocation strategy This commit is a reimplementation of the strategy by which the pooling instance allocator selects a slot for a module. Previously there was a choice amongst three different algorithms: "reuse affinity", "next available", and "random". The default was "reuse affinity" but some new data has come to light which shows that this may not always be a good default. Notably the pooling allocator will retain some memory per-slot in the pooling instance allocator, for example instance data or memory data if-so-configured. This means that a currently unused, but previously used, slot can contribute to the RSS usage of a program using Wasmtime. Consequently the RSS impact here is O(max slots) which can be counter-intuitive for embedders. This particularly affects "reuse affinity" because the algorithm for picking a slot when there are no affine slots is "pick a random slot", which means eventually all slots will get used. In discussions about possible ways to tackle this, an alternative to "pick a strategy" arose and is now implemented in this commit. Concretely the new allocation algorithm for a slot is now: * First pick the most recently used affine slot, if one exists. * Otherwise if the number of affine slots to other modules is above some threshold N then pick the least-recently used affine slot. * Otherwise pick a slot that's affine to nothing. The "N" in this algorithm is configurable and setting it to 0 is the same as the old "next available" strategy while setting it to infinity is the same as the "reuse affinity" algorithm. Setting it to something in the middle provides a knob to allow a modest "cache" of affine slots while not allowing the total set of slots used to grow too much beyond the maximal concurrent set of modules. The "random" strategy is now no longer possible and was removed to help simplify the allocator. * Resolve rustdoc warnings in `wasmtime-runtime` crate * Remove `max_cold` as it duplicates the `slot_state.len()` * More descriptive names * Add a comment and debug assertion * Add some list assertions
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS (locally) with a small install script:
curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.
-
Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.
-
Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation.
Languages supported by the Bytecode Alliance:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders, CMake orwasmtimeConan package - C++ - the
wasmtime-cpprepository or usewasmtime-cppConan package - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository - Ruby - the
wasmtimegem
Languages supported by the community:
- Elixir - the
wasmexhex package
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!
It's Wasmtime.