The logic for generation of shifts-by-immediate was not quite right. The result was that even
shifts by an amount known at compile time were being done by moving the shift immediate into %cl
and then doing a variable shift by %cl. The effect is worse than it sounds, because all of
those shift constants are small and often used in multiple places, so they were GVN'd up and
often ended up at the entry block of the function. Hence these were connected to the use points
by long live ranges which got spilled. So all in all, most of the win here comes from avoiding
spilling.
The problem was caused by this line, in the `Opcode::Ishl | Opcode::Ushr ..` case:
```
let (count, rhs) = if let Some(cst) = ctx.get_constant(inputs[1].insn) {
```
`inputs[]` appears to refer to this CLIF instruction's inputs, and bizarrely `inputs[].insn` all
refer to the instruction (the shift) itself. Hence `ctx.get_constant(inputs[1].insn)` asks
"does this shift instruction produce a constant" to which the answer is always "no", so the
shift-by-unknown amount code is always generated. The fix here is to change that expression to
```
let (count, rhs) = if let Some(cst) = ctx.get_input(insn, 1).constant {
```
`get_input`'s result conveniently includes a `constant` field of type `Option<u64>`, so we just
use that instead.
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS with a small install script:
$ curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.
-
Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!.
It's Wasmtime.