Chris Fallin 75ae976adc egraphs: fix accidental remat of call. (#5726)
In the provided test case in #5716, the result of a call was then
added to 0. We have a rewrite rule that sets the remat-bit on any add
of a value and a constant, because these frequently appear (e.g. from
address offset calculations) and this can frequently reduce register
pressure (one long-lived base vs. many long-lived base+offset values).
Separately, we have an algebraic rule that `x+0` rewrites to `x`.

The result of this was that we had an eclass with the remat bit set on
the add, but the add was also union'd into the call. We pick the
latter during extraction, because it's cheaper not to do the add at
all; but we still get the remat bit, and try to remat a call (!),
which blows up later.

This PR fixes the logic to look up the "best value" for a value (i.e.,
whatever extraction determined), and look up the remat bit on *that*
node, not the canonical node.

(Why did the canonical node become the iadd and not the call? Because
the former had a lower value-number, as an accident of IR
construction; we don't impose any requirements on the input CLIF's
value-number ordering, and I don't think this breaks any of the
important acyclic properties, even though there is technically a
dependence from a lower-numbered to a higher-numbered node. In essence
one can think of them as having "virtual numbers" in any true
topologically-sorted order, and the only place the actual integer
indices matter should be in choosing the "canonical ID", which is just
used for dedup'ing, modulo this bug.)

Fixes #5716.
2023-02-06 23:36:16 +00:00
2020-02-28 09:16:05 -08:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat supported rustc stable Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS (locally) with a small install script:

curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.

  • Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.

  • Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation.

Languages supported by the Bytecode Alliance:

Languages supported by the community:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%