Files
wasmtime/crates/runtime/src/instance/allocator.rs
Alex Crichton 77e06213b7 Refactor the internals of traps in wasmtime_runtime (#4326)
This commit is a small refactoring of `wasmtime_runtime::Trap` and
various internals. The `Trap` structure is now a reason plus backtrace,
and the old `Trap` enum is mostly in `TrapReason` now. Additionally all
`Trap`-returning methods of `wasmtime_runtime` are changed to returning
a `TrapCode` to indicate that they never capture a backtrace. Finally
the `UnwindReason` internally now no longer duplicates the trap reasons,
instead only having two variants of "panic" and "trap".

The motivation for this commit is mostly just cleaning up trap internals
and removing the need for methods like
`wasmtime_runtime::Trap::insert_backtrace` to leave it only happening at
the `wasmtime` layer.
2022-06-27 12:35:14 -05:00

594 lines
21 KiB
Rust

use crate::imports::Imports;
use crate::instance::{Instance, InstanceHandle, RuntimeMemoryCreator};
use crate::memory::{DefaultMemoryCreator, Memory};
use crate::table::Table;
use crate::ModuleRuntimeInfo;
use crate::Store;
use anyhow::Result;
use std::alloc;
use std::any::Any;
use std::convert::TryFrom;
use std::ptr;
use std::sync::Arc;
use thiserror::Error;
use wasmtime_environ::{
DefinedMemoryIndex, DefinedTableIndex, HostPtr, InitMemory, MemoryInitialization,
MemoryInitializer, Module, PrimaryMap, TableInitialization, TableInitializer, TrapCode,
VMOffsets, WasmType, WASM_PAGE_SIZE,
};
#[cfg(feature = "pooling-allocator")]
mod pooling;
#[cfg(feature = "pooling-allocator")]
pub use self::pooling::{InstanceLimits, PoolingAllocationStrategy, PoolingInstanceAllocator};
/// Represents a request for a new runtime instance.
pub struct InstanceAllocationRequest<'a> {
/// The info related to the compiled version of this module,
/// needed for instantiation: function metadata, JIT code
/// addresses, precomputed images for lazy memory and table
/// initialization, and the like. This Arc is cloned and held for
/// the lifetime of the instance.
pub runtime_info: &'a Arc<dyn ModuleRuntimeInfo>,
/// The imports to use for the instantiation.
pub imports: Imports<'a>,
/// The host state to associate with the instance.
pub host_state: Box<dyn Any + Send + Sync>,
/// A pointer to the "store" for this instance to be allocated. The store
/// correlates with the `Store` in wasmtime itself, and lots of contextual
/// information about the execution of wasm can be learned through the store.
///
/// Note that this is a raw pointer and has a static lifetime, both of which
/// are a bit of a lie. This is done purely so a store can learn about
/// itself when it gets called as a host function, and additionally so this
/// runtime can access internals as necessary (such as the
/// VMExternRefActivationsTable or the resource limiter methods).
///
/// Note that this ends up being a self-pointer to the instance when stored.
/// The reason is that the instance itself is then stored within the store.
/// We use a number of `PhantomPinned` declarations to indicate this to the
/// compiler. More info on this in `wasmtime/src/store.rs`
pub store: StorePtr,
}
/// A pointer to a Store. This Option<*mut dyn Store> is wrapped in a struct
/// so that the function to create a &mut dyn Store is a method on a member of
/// InstanceAllocationRequest, rather than on a &mut InstanceAllocationRequest
/// itself, because several use-sites require a split mut borrow on the
/// InstanceAllocationRequest.
pub struct StorePtr(Option<*mut dyn Store>);
impl StorePtr {
/// A pointer to no Store.
pub fn empty() -> Self {
Self(None)
}
/// A pointer to a Store.
pub fn new(ptr: *mut dyn Store) -> Self {
Self(Some(ptr))
}
/// The raw contents of this struct
pub fn as_raw(&self) -> Option<*mut dyn Store> {
self.0.clone()
}
/// Use the StorePtr as a mut ref to the Store.
/// Safety: must not be used outside the original lifetime of the borrow.
pub(crate) unsafe fn get(&mut self) -> Option<&mut dyn Store> {
match self.0 {
Some(ptr) => Some(&mut *ptr),
None => None,
}
}
}
/// An link error while instantiating a module.
#[derive(Error, Debug)]
#[error("Link error: {0}")]
pub struct LinkError(pub String);
/// An error while instantiating a module.
#[derive(Error, Debug)]
pub enum InstantiationError {
/// Insufficient resources available for execution.
#[error("Insufficient resources: {0}")]
Resource(anyhow::Error),
/// A wasm link error occurred.
#[error("Failed to link module")]
Link(#[from] LinkError),
/// A trap ocurred during instantiation, after linking.
#[error("Trap occurred during instantiation")]
Trap(TrapCode),
/// A limit on how many instances are supported has been reached.
#[error("Limit of {0} concurrent instances has been reached")]
Limit(u32),
}
/// An error while creating a fiber stack.
#[cfg(feature = "async")]
#[derive(Error, Debug)]
pub enum FiberStackError {
/// Insufficient resources available for the request.
#[error("Insufficient resources: {0}")]
Resource(anyhow::Error),
/// An error for when the allocator doesn't support fiber stacks.
#[error("fiber stacks are not supported by the allocator")]
NotSupported,
/// A limit on how many fibers are supported has been reached.
#[error("Limit of {0} concurrent fibers has been reached")]
Limit(u32),
}
/// Represents a runtime instance allocator.
///
/// # Safety
///
/// This trait is unsafe as it requires knowledge of Wasmtime's runtime internals to implement correctly.
pub unsafe trait InstanceAllocator: Send + Sync {
/// Validates that a module is supported by the allocator.
fn validate(&self, module: &Module) -> Result<()> {
drop(module);
Ok(())
}
/// Adjusts the tunables prior to creation of any JIT compiler.
///
/// This method allows the instance allocator control over tunables passed to a `wasmtime_jit::Compiler`.
fn adjust_tunables(&self, tunables: &mut wasmtime_environ::Tunables) {
drop(tunables);
}
/// Allocates an instance for the given allocation request.
///
/// # Safety
///
/// This method is not inherently unsafe, but care must be made to ensure
/// pointers passed in the allocation request outlive the returned instance.
unsafe fn allocate(
&self,
req: InstanceAllocationRequest,
) -> Result<InstanceHandle, InstantiationError>;
/// Finishes the instantiation process started by an instance allocator.
///
/// # Safety
///
/// This method is only safe to call immediately after an instance has been allocated.
unsafe fn initialize(
&self,
handle: &mut InstanceHandle,
module: &Module,
is_bulk_memory: bool,
) -> Result<(), InstantiationError>;
/// Deallocates a previously allocated instance.
///
/// # Safety
///
/// This function is unsafe because there are no guarantees that the given handle
/// is the only owner of the underlying instance to deallocate.
///
/// Use extreme care when deallocating an instance so that there are no dangling instance pointers.
unsafe fn deallocate(&self, handle: &InstanceHandle);
/// Allocates a fiber stack for calling async functions on.
#[cfg(feature = "async")]
fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError>;
/// Deallocates a fiber stack that was previously allocated with `allocate_fiber_stack`.
///
/// # Safety
///
/// The provided stack is required to have been allocated with `allocate_fiber_stack`.
#[cfg(feature = "async")]
unsafe fn deallocate_fiber_stack(&self, stack: &wasmtime_fiber::FiberStack);
}
fn get_table_init_start(
init: &TableInitializer,
instance: &Instance,
) -> Result<u32, InstantiationError> {
match init.base {
Some(base) => {
let val = unsafe {
if let Some(def_index) = instance.module().defined_global_index(base) {
*instance.global(def_index).as_u32()
} else {
*(*instance.imported_global(base).from).as_u32()
}
};
init.offset.checked_add(val).ok_or_else(|| {
InstantiationError::Link(LinkError(
"element segment global base overflows".to_owned(),
))
})
}
None => Ok(init.offset),
}
}
fn check_table_init_bounds(
instance: &mut Instance,
module: &Module,
) -> Result<(), InstantiationError> {
match &module.table_initialization {
TableInitialization::FuncTable { segments, .. }
| TableInitialization::Segments { segments } => {
for segment in segments {
let table = unsafe { &*instance.get_table(segment.table_index) };
let start = get_table_init_start(segment, instance)?;
let start = usize::try_from(start).unwrap();
let end = start.checked_add(segment.elements.len());
match end {
Some(end) if end <= table.size() as usize => {
// Initializer is in bounds
}
_ => {
return Err(InstantiationError::Link(LinkError(
"table out of bounds: elements segment does not fit".to_owned(),
)))
}
}
}
}
}
Ok(())
}
fn initialize_tables(instance: &mut Instance, module: &Module) -> Result<(), InstantiationError> {
// Note: if the module's table initializer state is in
// FuncTable mode, we will lazily initialize tables based on
// any statically-precomputed image of FuncIndexes, but there
// may still be "leftover segments" that could not be
// incorporated. So we have a unified handler here that
// iterates over all segments (Segments mode) or leftover
// segments (FuncTable mode) to initialize.
match &module.table_initialization {
TableInitialization::FuncTable { segments, .. }
| TableInitialization::Segments { segments } => {
for segment in segments {
instance
.table_init_segment(
segment.table_index,
&segment.elements,
get_table_init_start(segment, instance)?,
0,
segment.elements.len() as u32,
)
.map_err(InstantiationError::Trap)?;
}
}
}
Ok(())
}
fn get_memory_init_start(
init: &MemoryInitializer,
instance: &Instance,
) -> Result<u64, InstantiationError> {
match init.base {
Some(base) => {
let mem64 = instance.module().memory_plans[init.memory_index]
.memory
.memory64;
let val = unsafe {
let global = if let Some(def_index) = instance.module().defined_global_index(base) {
instance.global(def_index)
} else {
&*instance.imported_global(base).from
};
if mem64 {
*global.as_u64()
} else {
u64::from(*global.as_u32())
}
};
init.offset.checked_add(val).ok_or_else(|| {
InstantiationError::Link(LinkError("data segment global base overflows".to_owned()))
})
}
None => Ok(init.offset),
}
}
fn check_memory_init_bounds(
instance: &Instance,
initializers: &[MemoryInitializer],
) -> Result<(), InstantiationError> {
for init in initializers {
let memory = instance.get_memory(init.memory_index);
let start = get_memory_init_start(init, instance)?;
let end = usize::try_from(start)
.ok()
.and_then(|start| start.checked_add(init.data.len()));
match end {
Some(end) if end <= memory.current_length() => {
// Initializer is in bounds
}
_ => {
return Err(InstantiationError::Link(LinkError(
"memory out of bounds: data segment does not fit".into(),
)))
}
}
}
Ok(())
}
fn initialize_memories(instance: &mut Instance, module: &Module) -> Result<(), InstantiationError> {
let memory_size_in_pages =
&|memory| (instance.get_memory(memory).current_length() as u64) / u64::from(WASM_PAGE_SIZE);
// Loads the `global` value and returns it as a `u64`, but sign-extends
// 32-bit globals which can be used as the base for 32-bit memories.
let get_global_as_u64 = &|global| unsafe {
let def = if let Some(def_index) = instance.module().defined_global_index(global) {
instance.global(def_index)
} else {
&*instance.imported_global(global).from
};
if module.globals[global].wasm_ty == WasmType::I64 {
*def.as_u64()
} else {
u64::from(*def.as_u32())
}
};
// Delegates to the `init_memory` method which is sort of a duplicate of
// `instance.memory_init_segment` but is used at compile-time in other
// contexts so is shared here to have only one method of memory
// initialization.
//
// This call to `init_memory` notably implements all the bells and whistles
// so errors only happen if an out-of-bounds segment is found, in which case
// a trap is returned.
let ok = module.memory_initialization.init_memory(
InitMemory::Runtime {
memory_size_in_pages,
get_global_as_u64,
},
&mut |memory_index, init| {
// If this initializer applies to a defined memory but that memory
// doesn't need initialization, due to something like copy-on-write
// pre-initializing it via mmap magic, then this initializer can be
// skipped entirely.
if let Some(memory_index) = module.defined_memory_index(memory_index) {
if !instance.memories[memory_index].needs_init() {
return true;
}
}
let memory = instance.get_memory(memory_index);
unsafe {
let src = instance.wasm_data(init.data.clone());
let dst = memory.base.add(usize::try_from(init.offset).unwrap());
// FIXME audit whether this is safe in the presence of shared
// memory
// (https://github.com/bytecodealliance/wasmtime/issues/4203).
ptr::copy_nonoverlapping(src.as_ptr(), dst, src.len())
}
true
},
);
if !ok {
return Err(InstantiationError::Trap(TrapCode::HeapOutOfBounds));
}
Ok(())
}
fn check_init_bounds(instance: &mut Instance, module: &Module) -> Result<(), InstantiationError> {
check_table_init_bounds(instance, module)?;
match &instance.module().memory_initialization {
MemoryInitialization::Segmented(initializers) => {
check_memory_init_bounds(instance, initializers)?;
}
// Statically validated already to have everything in-bounds.
MemoryInitialization::Static { .. } => {}
}
Ok(())
}
fn initialize_instance(
instance: &mut Instance,
module: &Module,
is_bulk_memory: bool,
) -> Result<(), InstantiationError> {
// If bulk memory is not enabled, bounds check the data and element segments before
// making any changes. With bulk memory enabled, initializers are processed
// in-order and side effects are observed up to the point of an out-of-bounds
// initializer, so the early checking is not desired.
if !is_bulk_memory {
check_init_bounds(instance, module)?;
}
// Initialize the tables
initialize_tables(instance, module)?;
// Initialize the memories
initialize_memories(instance, &module)?;
Ok(())
}
/// Represents the on-demand instance allocator.
#[derive(Clone)]
pub struct OnDemandInstanceAllocator {
mem_creator: Option<Arc<dyn RuntimeMemoryCreator>>,
#[cfg(feature = "async")]
stack_size: usize,
}
impl OnDemandInstanceAllocator {
/// Creates a new on-demand instance allocator.
pub fn new(mem_creator: Option<Arc<dyn RuntimeMemoryCreator>>, stack_size: usize) -> Self {
drop(stack_size); // suppress unused warnings w/o async feature
Self {
mem_creator,
#[cfg(feature = "async")]
stack_size,
}
}
fn create_tables(
store: &mut StorePtr,
runtime_info: &Arc<dyn ModuleRuntimeInfo>,
) -> Result<PrimaryMap<DefinedTableIndex, Table>, InstantiationError> {
let module = runtime_info.module();
let num_imports = module.num_imported_tables;
let mut tables: PrimaryMap<DefinedTableIndex, _> =
PrimaryMap::with_capacity(module.table_plans.len() - num_imports);
for (_, table) in module.table_plans.iter().skip(num_imports) {
tables.push(
Table::new_dynamic(table, unsafe {
store
.get()
.expect("if module has table plans, store is not empty")
})
.map_err(InstantiationError::Resource)?,
);
}
Ok(tables)
}
fn create_memories(
&self,
store: &mut StorePtr,
runtime_info: &Arc<dyn ModuleRuntimeInfo>,
) -> Result<PrimaryMap<DefinedMemoryIndex, Memory>, InstantiationError> {
let module = runtime_info.module();
let creator = self
.mem_creator
.as_deref()
.unwrap_or_else(|| &DefaultMemoryCreator);
let num_imports = module.num_imported_memories;
let mut memories: PrimaryMap<DefinedMemoryIndex, _> =
PrimaryMap::with_capacity(module.memory_plans.len() - num_imports);
for (memory_idx, plan) in module.memory_plans.iter().skip(num_imports) {
let defined_memory_idx = module
.defined_memory_index(memory_idx)
.expect("Skipped imports, should never be None");
let image = runtime_info
.memory_image(defined_memory_idx)
.map_err(|err| InstantiationError::Resource(err.into()))?;
memories.push(
Memory::new_dynamic(
plan,
creator,
unsafe {
store
.get()
.expect("if module has memory plans, store is not empty")
},
image,
)
.map_err(InstantiationError::Resource)?,
);
}
Ok(memories)
}
}
impl Default for OnDemandInstanceAllocator {
fn default() -> Self {
Self {
mem_creator: None,
#[cfg(feature = "async")]
stack_size: 0,
}
}
}
/// Allocate an instance containing a single memory.
///
/// In order to import a [`Memory`] into a WebAssembly instance, Wasmtime
/// requires that memory to exist in its own instance. Here we bring to life
/// such a "Frankenstein" instance with the only purpose of exporting a
/// [`Memory`].
pub unsafe fn allocate_single_memory_instance(
req: InstanceAllocationRequest,
memory: Memory,
) -> Result<InstanceHandle, InstantiationError> {
let mut memories = PrimaryMap::default();
memories.push(memory);
let tables = PrimaryMap::default();
let module = req.runtime_info.module();
let offsets = VMOffsets::new(HostPtr, module);
let layout = Instance::alloc_layout(&offsets);
let instance = alloc::alloc(layout) as *mut Instance;
Instance::new_at(instance, layout.size(), offsets, req, memories, tables);
Ok(InstanceHandle { instance })
}
/// Internal implementation of [`InstanceHandle`] deallocation.
///
/// See [`InstanceAllocator::deallocate()`] for more details.
pub unsafe fn deallocate(handle: &InstanceHandle) {
let layout = Instance::alloc_layout(&handle.instance().offsets);
ptr::drop_in_place(handle.instance);
alloc::dealloc(handle.instance.cast(), layout);
}
unsafe impl InstanceAllocator for OnDemandInstanceAllocator {
unsafe fn allocate(
&self,
mut req: InstanceAllocationRequest,
) -> Result<InstanceHandle, InstantiationError> {
let memories = self.create_memories(&mut req.store, &req.runtime_info)?;
let tables = Self::create_tables(&mut req.store, &req.runtime_info)?;
let module = req.runtime_info.module();
let offsets = VMOffsets::new(HostPtr, module);
let layout = Instance::alloc_layout(&offsets);
let instance_ptr = alloc::alloc(layout) as *mut Instance;
Instance::new_at(instance_ptr, layout.size(), offsets, req, memories, tables);
Ok(InstanceHandle {
instance: instance_ptr,
})
}
unsafe fn initialize(
&self,
handle: &mut InstanceHandle,
module: &Module,
is_bulk_memory: bool,
) -> Result<(), InstantiationError> {
initialize_instance(handle.instance_mut(), module, is_bulk_memory)
}
unsafe fn deallocate(&self, handle: &InstanceHandle) {
deallocate(handle)
}
#[cfg(feature = "async")]
fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack, FiberStackError> {
if self.stack_size == 0 {
return Err(FiberStackError::NotSupported);
}
wasmtime_fiber::FiberStack::new(self.stack_size)
.map_err(|e| FiberStackError::Resource(e.into()))
}
#[cfg(feature = "async")]
unsafe fn deallocate_fiber_stack(&self, _stack: &wasmtime_fiber::FiberStack) {
// The on-demand allocator has no further bookkeeping for fiber stacks
}
}