* Refactor where results of compilation are stored This commit refactors the internals of compilation in Wasmtime to change where results of individual function compilation are stored. Previously compilation resulted in many maps being returned, and compilation results generally held all these maps together. This commit instead switches this to have all metadata stored in a `CompiledFunction` instead of having a separate map for each item that can be stored. The motivation for this is primarily to help out with future module-linking-related PRs. What exactly "module level" is depends on how we interpret modules and how many modules are in play, so it's a bit easier for operations in wasmtime to work at the function level where possible. This means that we don't have to pass around multiple different maps and a function index, but instead just one map or just one entry representing a compiled function. Additionally this change updates where the parallelism of compilation happens, pushing it into `wasmtime-jit` instead of `wasmtime-environ`. This is another goal where `wasmtime-jit` will have more knowledge about module-level pieces with module linking in play. User-facing-wise this should be the same in terms of parallel compilation, though. The ultimate goal of this refactoring is to make it easier for the results of compilation to actually be a set of wasm modules. This means we won't be able to have a map-per-metadata where the primary key is the function index, because there will be many modules within one "object file". * Don't clear out fields, just don't store them Persist a smaller set of fields in `CompilationArtifacts` instead of trying to clear fields out and dynamically not accessing them.
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS with a small install script:
$ curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.
-
Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!.
It's Wasmtime.