Files
wasmtime/tests/custom_signal_handler.rs
Alex Crichton 6571fb8f4f Remove HostRef from the wasmtime public API (#788)
* Remove `HostRef` from the `wasmtime` public API

This commit removes all remaining usages of `HostRef` in the public API
of the `wasmtime` crate. This involved a number of API decisions such
as:

* None of `Func`, `Global`, `Table`, or `Memory` are wrapped in `HostRef`
* All of `Func`, `Global`, `Table`, and `Memory` implement `Clone` now.
* Methods called `type` are renamed to `ty` to avoid typing `r#type`.
* Methods requiring mutability for external items now no longer require
  mutability. The mutable reference here is sort of a lie anyway since
  the internals are aliased by the underlying module anyway. This
  affects:
  * `Table::set`
  * `Table::grow`
  * `Memory::grow`
  * `Instance::set_signal_handler`
* The `Val::FuncRef` type is now no longer automatically coerced to
  `AnyRef`. This is technically a breaking change which is pretty bad,
  but I'm hoping that we can live with this interim state while we sort
  out the `AnyRef` story in general.
* The implementation of the C API was refactored and updated in a few
  locations to account for these changes:
  * Accessing the exports of an instance are now cached to ensure we
    always hand out the same `HostRef` values.
  * `wasm_*_t` for external values no longer have internal cache,
    instead they all wrap `wasm_external_t` and have an unchecked
    accessor for the underlying variant (since the type is proof that
    it's there). This makes casting back and forth much more trivial.

This is all related to #708 and while there's still more work to be done
in terms of documentation, this is the major bulk of the rest of the
implementation work on #708 I believe.

* More API updates

* Run rustfmt

* Fix a doc test

* More test updates
2020-01-10 10:42:14 -06:00

289 lines
10 KiB
Rust

#[cfg(not(target_os = "windows"))]
mod tests {
use std::rc::Rc;
use std::sync::atomic::{AtomicBool, Ordering};
use wasmtime::*;
use wasmtime_interface_types::{ModuleData, Value};
const WAT1: &str = r#"
(module
(func $read (export "read") (result i32)
(i32.load (i32.const 0))
)
(func $read_out_of_bounds (export "read_out_of_bounds") (result i32)
(i32.load
(i32.mul
;; memory size in Wasm pages
(memory.size)
;; Wasm page size
(i32.const 65536)
)
)
)
(func $start
(i32.store (i32.const 0) (i32.const 123))
)
(start $start)
(memory (export "memory") 1 4)
)
"#;
const WAT2: &str = r#"
(module
(import "other_module" "read" (func $other_module.read (result i32)))
(func $run (export "run") (result i32)
call $other_module.read)
)
"#;
fn invoke_export(
instance: &Instance,
data: &[u8],
func_name: &str,
) -> Result<Vec<Value>, anyhow::Error> {
ModuleData::new(&data)?.invoke_export(instance, func_name, &[])
}
// Locate "memory" export, get base address and size and set memory protection to PROT_NONE
fn set_up_memory(instance: &Instance) -> (*mut u8, usize) {
let mem_export = instance.get_wasmtime_memory().expect("memory");
let (base, length) = if let wasmtime_runtime::Export::Memory {
definition,
vmctx: _,
memory: _,
} = mem_export
{
unsafe {
let definition = std::ptr::read(definition);
(definition.base, definition.current_length)
}
} else {
panic!("expected memory");
};
// So we can later trigger SIGSEGV by performing a read
unsafe {
libc::mprotect(base as *mut libc::c_void, length, libc::PROT_NONE);
}
println!("memory: base={:?}, length={}", base, length);
(base, length)
}
fn handle_sigsegv(
base: *mut u8,
length: usize,
signum: libc::c_int,
siginfo: *const libc::siginfo_t,
) -> bool {
println!("Hello from instance signal handler!");
// SIGSEGV on Linux, SIGBUS on Mac
if libc::SIGSEGV == signum || libc::SIGBUS == signum {
let si_addr: *mut libc::c_void = unsafe { (*siginfo).si_addr() };
// Any signal from within module's memory we handle ourselves
let result = (si_addr as u64) < (base as u64) + (length as u64);
// Remove protections so the execution may resume
unsafe {
libc::mprotect(
base as *mut libc::c_void,
length,
libc::PROT_READ | libc::PROT_WRITE,
);
}
println!("signal handled: {}", result);
result
} else {
// Otherwise, we forward to wasmtime's signal handler.
false
}
}
#[test]
fn test_custom_signal_handler_single_instance() -> anyhow::Result<()> {
let engine = Engine::new(&Config::default());
let store = Store::new(&engine);
let data = wat::parse_str(WAT1)?;
let module = Module::new(&store, &data)?;
let instance = Instance::new(&store, &module, &[])?;
let (base, length) = set_up_memory(&instance);
instance.set_signal_handler(move |signum, siginfo, _| {
handle_sigsegv(base, length, signum, siginfo)
});
let exports = instance.exports();
assert!(!exports.is_empty());
// these invoke wasmtime_call_trampoline from action.rs
{
println!("calling read...");
let result = invoke_export(&instance, &data, "read").expect("read succeeded");
assert_eq!("123", result[0].clone().to_string());
}
{
println!("calling read_out_of_bounds...");
let trap = invoke_export(&instance, &data, "read_out_of_bounds").unwrap_err();
assert!(trap.root_cause().to_string().starts_with(
"trapped: Trap { message: \"call error: wasm trap: out of bounds memory access"
));
}
// these invoke wasmtime_call_trampoline from callable.rs
{
let read_func = exports[0]
.func()
.expect("expected a 'read' func in the module");
println!("calling read...");
let result = read_func.call(&[]).expect("expected function not to trap");
assert_eq!(123i32, result[0].clone().unwrap_i32());
}
{
let read_out_of_bounds_func = exports[1]
.func()
.expect("expected a 'read_out_of_bounds' func in the module");
println!("calling read_out_of_bounds...");
let trap = read_out_of_bounds_func.call(&[]).unwrap_err();
assert!(trap
.message()
.starts_with("call error: wasm trap: out of bounds memory access"));
}
Ok(())
}
#[test]
fn test_custom_signal_handler_multiple_instances() -> anyhow::Result<()> {
let engine = Engine::new(&Config::default());
let store = Store::new(&engine);
let data = wat::parse_str(WAT1)?;
let module = Module::new(&store, &data)?;
// Set up multiple instances
let instance1 = Instance::new(&store, &module, &[])?;
let instance1_handler_triggered = Rc::new(AtomicBool::new(false));
{
let (base1, length1) = set_up_memory(&instance1);
instance1.set_signal_handler({
let instance1_handler_triggered = instance1_handler_triggered.clone();
move |_signum, _siginfo, _context| {
// Remove protections so the execution may resume
unsafe {
libc::mprotect(
base1 as *mut libc::c_void,
length1,
libc::PROT_READ | libc::PROT_WRITE,
);
}
instance1_handler_triggered.store(true, Ordering::SeqCst);
println!(
"Hello from instance1 signal handler! {}",
instance1_handler_triggered.load(Ordering::SeqCst)
);
true
}
});
}
let instance2 = Instance::new(&store, &module, &[]).expect("failed to instantiate module");
let instance2_handler_triggered = Rc::new(AtomicBool::new(false));
{
let (base2, length2) = set_up_memory(&instance2);
instance2.set_signal_handler({
let instance2_handler_triggered = instance2_handler_triggered.clone();
move |_signum, _siginfo, _context| {
// Remove protections so the execution may resume
unsafe {
libc::mprotect(
base2 as *mut libc::c_void,
length2,
libc::PROT_READ | libc::PROT_WRITE,
);
}
instance2_handler_triggered.store(true, Ordering::SeqCst);
println!(
"Hello from instance2 signal handler! {}",
instance2_handler_triggered.load(Ordering::SeqCst)
);
true
}
});
}
// Invoke both instances and trigger both signal handlers
// First instance1
{
let exports1 = instance1.exports();
assert!(!exports1.is_empty());
println!("calling instance1.read...");
let result = invoke_export(&instance1, &data, "read").expect("read succeeded");
assert_eq!("123", result[0].clone().to_string());
assert_eq!(
instance1_handler_triggered.load(Ordering::SeqCst),
true,
"instance1 signal handler has been triggered"
);
}
// And then instance2
{
let exports2 = instance2.exports();
assert!(!exports2.is_empty());
println!("calling instance2.read...");
let result = invoke_export(&instance2, &data, "read").expect("read succeeded");
assert_eq!("123", result[0].clone().to_string());
assert_eq!(
instance2_handler_triggered.load(Ordering::SeqCst),
true,
"instance1 signal handler has been triggered"
);
}
Ok(())
}
#[test]
fn test_custom_signal_handler_instance_calling_another_instance() -> anyhow::Result<()> {
let engine = Engine::new(&Config::default());
let store = Store::new(&engine);
// instance1 which defines 'read'
let data1 = wat::parse_str(WAT1)?;
let module1 = Module::new(&store, &data1)?;
let instance1 = Instance::new(&store, &module1, &[])?;
let (base1, length1) = set_up_memory(&instance1);
instance1.set_signal_handler(move |signum, siginfo, _| {
println!("instance1");
handle_sigsegv(base1, length1, signum, siginfo)
});
let instance1_exports = instance1.exports();
assert!(!instance1_exports.is_empty());
let instance1_read = instance1_exports[0].clone();
// instance2 wich calls 'instance1.read'
let data2 = wat::parse_str(WAT2)?;
let module2 = Module::new(&store, &data2)?;
let instance2 = Instance::new(&store, &module2, &[instance1_read])?;
// since 'instance2.run' calls 'instance1.read' we need to set up the signal handler to handle
// SIGSEGV originating from within the memory of instance1
instance2.set_signal_handler(move |signum, siginfo, _| {
handle_sigsegv(base1, length1, signum, siginfo)
});
println!("calling instance2.run");
let result = invoke_export(&instance2, &data2, "run")?;
assert_eq!("123", result[0].clone().to_string());
Ok(())
}
}