Alex Crichton 63d80fc509 Remove the need to have a Store for an InstancePre (#5683)
* Remove the need to have a `Store` for an `InstancePre`

This commit relaxes a requirement of the `InstancePre` API, notably its
construction via `Linker::instantiate_pre`. Previously this function
required a `Store<T>` to be present to be able to perform type-checking
on the contents of the linker, and now this requirement has been
removed.

Items stored within a linker are either a `HostFunc`, which has type
information inside of it, or an `Extern`, which doesn't have type
information inside of it. Due to the usage of `Extern` this is why a
`Store` was required during the `InstancePre` construction process, it's
used to extract the type of an `Extern`. This commit implements a
solution where the type information of an `Extern` is stored alongside
the `Extern` itself, meaning that the `InstancePre` construction process
no longer requires a `Store<T>`.

One caveat of this implementation is that some items, such as tables and
memories, technically have a "dynamic type" where during type checking
their current size is consulted to match against the minimum size
required of an import. This no longer works when using
`Linker::instantiate_pre` as the current size used is the one when it
was inserted into the linker rather than the one available at
instantiation time. It's hoped, however, that this is a relatively
esoteric use case that doesn't impact many real-world users.

Additionally note that this is an API-breaking change. Not only is the
`Store` argument removed from `Linker::instantiate_pre`, but some other
methods such as `Linker::define` grew a `Store` argument as the type
needs to be extracted when an item is inserted into a linker.

Closes #5675

* Fix the C API

* Fix benchmark compilation

* Add C API docs

* Update crates/wasmtime/src/linker.rs

Co-authored-by: Andrew Brown <andrew.brown@intel.com>

---------

Co-authored-by: Andrew Brown <andrew.brown@intel.com>
2023-02-02 11:54:20 -06:00
2020-02-28 09:16:05 -08:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat supported rustc stable Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS (locally) with a small install script:

curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.

  • Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.

  • Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation.

Languages supported by the Bytecode Alliance:

Languages supported by the community:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%