* Implement support for dynamic memories in the pooling allocator This is a continuation of the thrust in #5207 for reducing page faults and lock contention when using the pooling allocator. To that end this commit implements support for efficient memory management in the pooling allocator when using wasm that is instrumented with bounds checks. The `MemoryImageSlot` type now avoids unconditionally shrinking memory back to its initial size during the `clear_and_remain_ready` operation, instead deferring optional resizing of memory to the subsequent call to `instantiate` when the slot is reused. The instantiation portion then takes the "memory style" as an argument which dictates whether the accessible memory must be precisely fit or whether it's allowed to exceed the maximum. This in effect enables skipping a call to `mprotect` to shrink the heap when dynamic memory checks are enabled. In terms of page fault and contention this should improve the situation by: * Fewer calls to `mprotect` since once a heap grows it stays grown and it never shrinks. This means that a write lock is taken within the kernel much more rarely from before (only asymptotically now, not N-times-per-instance). * Accessed memory after a heap growth operation will not fault if it was previously paged in by a prior instance and set to zero with `memset`. Unlike #5207 which requires a 6.0 kernel to see this optimization this commit enables the optimization for any kernel. The major cost of choosing this strategy is naturally the performance hit of the wasm itself. This is being looked at in PRs such as #5190 to improve Wasmtime's story here. This commit does not implement any new configuration options for Wasmtime but instead reinterprets existing configuration options. The pooling allocator no longer unconditionally sets `static_memory_bound_is_maximum` and then implements support necessary for this memory type. This other change to this commit is that the `Tunables::static_memory_bound` configuration option is no longer gating on the creation of a `MemoryPool` and it will now appropriately size to `instance_limits.memory_pages` if the `static_memory_bound` is to small. This is done to accomodate fuzzing more easily where the `static_memory_bound` will become small during fuzzing and otherwise the configuration would be rejected and require manual handling. The spirit of the `MemoryPool` is one of large virtual address space reservations anyway so it seemed reasonable to interpret the configuration this way. * Skip zero memory_size cases These are causing errors to happen when fuzzing and otherwise in theory shouldn't be too interesting to optimize for anyway since they likely aren't used in practice.
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS with a small install script:
curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the embedder and wasm, and scalability of concurrent instances.
-
Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.
-
Configurable. Wasmtime uses sensible defaults, but can also be configured to provide more fine-grained control over things like CPU and memory consumption. Whether you want to run Wasmtime in a tiny environment or on massive servers with many concurrent instances, we've got you covered.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders, CMake orwasmtimeConan package - C++ - the
wasmtime-cpprepository or usewasmtime-cppConan package - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!
It's Wasmtime.