Chris Fallin 4638de673c x64 bugfix: prevent load-op fusion of cmp because it could be emitted multiple times.
On x64, the new backend generates `cmp` instructions at their use-sites
when possible (when the icmp that generates a boolean is known) so that
the condition flows directly through flags rather than a materialized
boolean. E.g., both `bint` (boolean to int) and `select` (conditional
select) instruction lowerings invoke `emit_cmp()` to do so.

Load-op fusion in `emit_cmp()` nominally allowed `cmp` to use its `cmp
reg, mem` form.

However, the mergeable-load condition (load has only single use) was not
adequately checked. Consider the sequence:

```
    v2 = load.i64 v1
    v3 = icmp eq v0, v2
    v4 = bint.i64 v3
    v5 = select.i64 v3, v0, v1
```

The load `v2` is only used in the `icmp` at `v3`. However, the cmp will
be separately codegen'd twice, once for the `bint` and once for the
`select`.

Prior to this fix, the above example would result in the load at `v2`
sinking to the `cmp` just above the `select`; we then emit another `cmp`
for the `bint`, but the load has already been used once so we do not
allow merging. We thus (i) expect the register for `v2` to contain the
loaded value, but (ii) skip the codegen for the load because it has been
sunk. This results in a regalloc error (unexpected livein) as the
unfilled register is upward-exposed to the entry point.

Because of this, we need to accept only the reg, reg form in
`emit_cmp()` (and the FP equivalent). We could get marginally better
code by tracking whether the `cmp` we are emitting comes from an
`icmp`/`fcmp` with only one use; but IMHO simplicity is a better rule
here when subtle interactions occur.
2021-01-13 09:48:51 -08:00
2021-01-04 14:50:42 -06:00
2020-12-14 13:39:38 -06:00
2021-01-08 16:54:54 -08:00
2020-02-28 09:16:05 -08:00
2021-01-04 09:05:42 -06:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat min rustc Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS with a small install script:

$ curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.

  • Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!.


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%