- Panic messages must now be string literals (we used `format!()` in many places; `panic!()` can take format strings directly). - Some dead enum options with EVEX encoding stuff in old x86 backend. This will go away soon and/or be moved to the new backend anyway, so let's silence the warning for now. - A few other misc warnings.
579 lines
20 KiB
Rust
579 lines
20 KiB
Rust
//! Emitting binary x86 machine code.
|
|
|
|
use super::enc_tables::{needs_offset, needs_sib_byte};
|
|
use super::registers::RU;
|
|
use crate::binemit::{bad_encoding, CodeSink, Reloc};
|
|
use crate::ir::condcodes::{CondCode, FloatCC, IntCC};
|
|
use crate::ir::{
|
|
Block, Constant, ExternalName, Function, Inst, InstructionData, JumpTable, LibCall, Opcode,
|
|
TrapCode,
|
|
};
|
|
use crate::isa::{RegUnit, StackBase, StackBaseMask, StackRef, TargetIsa};
|
|
use crate::regalloc::RegDiversions;
|
|
use cranelift_codegen_shared::isa::x86::EncodingBits;
|
|
|
|
include!(concat!(env!("OUT_DIR"), "/binemit-x86.rs"));
|
|
|
|
// Convert a stack base to the corresponding register.
|
|
fn stk_base(base: StackBase) -> RegUnit {
|
|
let ru = match base {
|
|
StackBase::SP => RU::rsp,
|
|
StackBase::FP => RU::rbp,
|
|
StackBase::Zone => unimplemented!(),
|
|
};
|
|
ru as RegUnit
|
|
}
|
|
|
|
// Mandatory prefix bytes for Mp* opcodes.
|
|
const PREFIX: [u8; 3] = [0x66, 0xf3, 0xf2];
|
|
|
|
// Second byte for three-byte opcodes for mm=0b10 and mm=0b11.
|
|
const OP3_BYTE2: [u8; 2] = [0x38, 0x3a];
|
|
|
|
// A REX prefix with no bits set: 0b0100WRXB.
|
|
const BASE_REX: u8 = 0b0100_0000;
|
|
|
|
// Create a single-register REX prefix, setting the B bit to bit 3 of the register.
|
|
// This is used for instructions that encode a register in the low 3 bits of the opcode and for
|
|
// instructions that use the ModR/M `reg` field for something else.
|
|
fn rex1(reg_b: RegUnit) -> u8 {
|
|
let b = ((reg_b >> 3) & 1) as u8;
|
|
BASE_REX | b
|
|
}
|
|
|
|
// Create a dual-register REX prefix, setting:
|
|
//
|
|
// REX.B = bit 3 of r/m register, or SIB base register when a SIB byte is present.
|
|
// REX.R = bit 3 of reg register.
|
|
fn rex2(rm: RegUnit, reg: RegUnit) -> u8 {
|
|
let b = ((rm >> 3) & 1) as u8;
|
|
let r = ((reg >> 3) & 1) as u8;
|
|
BASE_REX | b | (r << 2)
|
|
}
|
|
|
|
// Create a three-register REX prefix, setting:
|
|
//
|
|
// REX.B = bit 3 of r/m register, or SIB base register when a SIB byte is present.
|
|
// REX.R = bit 3 of reg register.
|
|
// REX.X = bit 3 of SIB index register.
|
|
fn rex3(rm: RegUnit, reg: RegUnit, index: RegUnit) -> u8 {
|
|
let b = ((rm >> 3) & 1) as u8;
|
|
let r = ((reg >> 3) & 1) as u8;
|
|
let x = ((index >> 3) & 1) as u8;
|
|
BASE_REX | b | (x << 1) | (r << 2)
|
|
}
|
|
|
|
/// Encode the RXBR' bits of the EVEX P0 byte. For an explanation of these bits, see section 2.6.1
|
|
/// in the Intel Software Development Manual, volume 2A. These bits can be used by different
|
|
/// addressing modes (see section 2.6.2), requiring different `vex*` functions than this one.
|
|
fn evex2(rm: RegUnit, reg: RegUnit) -> u8 {
|
|
let b = (!(rm >> 3) & 1) as u8;
|
|
let x = (!(rm >> 4) & 1) as u8;
|
|
let r = (!(reg >> 3) & 1) as u8;
|
|
let r_ = (!(reg >> 4) & 1) as u8;
|
|
0x00 | r_ | (b << 1) | (x << 2) | (r << 3)
|
|
}
|
|
|
|
/// Determines whether a REX prefix should be emitted. A REX byte always has 0100 in bits 7:4; bits
|
|
/// 3:0 correspond to WRXB. W allows certain instructions to declare a 64-bit operand size; because
|
|
/// [needs_rex] is only used by [infer_rex] and we prevent [infer_rex] from using [w] in
|
|
/// [Template::build], we do not need to check again whether [w] forces an inferred REX prefix--it
|
|
/// always does and should be encoded like `.rex().w()`. The RXB are extension of ModR/M or SIB
|
|
/// fields; see section 2.2.1.2 in the Intel Software Development Manual.
|
|
#[inline]
|
|
fn needs_rex(rex: u8) -> bool {
|
|
rex != BASE_REX
|
|
}
|
|
|
|
// Emit a REX prefix.
|
|
//
|
|
// The R, X, and B bits are computed from registers using the functions above. The W bit is
|
|
// extracted from `bits`.
|
|
fn rex_prefix<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(rex & 0xf8, BASE_REX);
|
|
let w = EncodingBits::from(bits).rex_w();
|
|
sink.put1(rex | (w << 3));
|
|
}
|
|
|
|
// Emit a single-byte opcode with no REX prefix.
|
|
fn put_op1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x8f00, 0, "Invalid encoding bits for Op1*");
|
|
debug_assert_eq!(rex, BASE_REX, "Invalid registers for REX-less Op1 encoding");
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
// Emit a single-byte opcode with REX prefix.
|
|
fn put_rexop1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x0f00, 0, "Invalid encoding bits for RexOp1*");
|
|
rex_prefix(bits, rex, sink);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
/// Emit a single-byte opcode with inferred REX prefix.
|
|
fn put_dynrexop1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x0f00, 0, "Invalid encoding bits for DynRexOp1*");
|
|
if needs_rex(rex) {
|
|
rex_prefix(bits, rex, sink);
|
|
}
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
// Emit two-byte opcode: 0F XX
|
|
fn put_op2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x8f00, 0x0400, "Invalid encoding bits for Op2*");
|
|
debug_assert_eq!(rex, BASE_REX, "Invalid registers for REX-less Op2 encoding");
|
|
sink.put1(0x0f);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
// Emit two-byte opcode: 0F XX with REX prefix.
|
|
fn put_rexop2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x0f00, 0x0400, "Invalid encoding bits for RexOp2*");
|
|
rex_prefix(bits, rex, sink);
|
|
sink.put1(0x0f);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
/// Emit two-byte opcode: 0F XX with inferred REX prefix.
|
|
fn put_dynrexop2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(
|
|
bits & 0x0f00,
|
|
0x0400,
|
|
"Invalid encoding bits for DynRexOp2*"
|
|
);
|
|
if needs_rex(rex) {
|
|
rex_prefix(bits, rex, sink);
|
|
}
|
|
sink.put1(0x0f);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
// Emit single-byte opcode with mandatory prefix.
|
|
fn put_mp1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x8c00, 0, "Invalid encoding bits for Mp1*");
|
|
let enc = EncodingBits::from(bits);
|
|
sink.put1(PREFIX[(enc.pp() - 1) as usize]);
|
|
debug_assert_eq!(rex, BASE_REX, "Invalid registers for REX-less Mp1 encoding");
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
// Emit single-byte opcode with mandatory prefix and REX.
|
|
fn put_rexmp1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x0c00, 0, "Invalid encoding bits for RexMp1*");
|
|
let enc = EncodingBits::from(bits);
|
|
sink.put1(PREFIX[(enc.pp() - 1) as usize]);
|
|
rex_prefix(bits, rex, sink);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
// Emit two-byte opcode (0F XX) with mandatory prefix.
|
|
fn put_mp2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x8c00, 0x0400, "Invalid encoding bits for Mp2*");
|
|
let enc = EncodingBits::from(bits);
|
|
sink.put1(PREFIX[(enc.pp() - 1) as usize]);
|
|
debug_assert_eq!(rex, BASE_REX, "Invalid registers for REX-less Mp2 encoding");
|
|
sink.put1(0x0f);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
// Emit two-byte opcode (0F XX) with mandatory prefix and REX.
|
|
fn put_rexmp2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x0c00, 0x0400, "Invalid encoding bits for RexMp2*");
|
|
let enc = EncodingBits::from(bits);
|
|
sink.put1(PREFIX[(enc.pp() - 1) as usize]);
|
|
rex_prefix(bits, rex, sink);
|
|
sink.put1(0x0f);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
/// Emit two-byte opcode (0F XX) with mandatory prefix and inferred REX.
|
|
fn put_dynrexmp2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(
|
|
bits & 0x0c00,
|
|
0x0400,
|
|
"Invalid encoding bits for DynRexMp2*"
|
|
);
|
|
let enc = EncodingBits::from(bits);
|
|
sink.put1(PREFIX[(enc.pp() - 1) as usize]);
|
|
if needs_rex(rex) {
|
|
rex_prefix(bits, rex, sink);
|
|
}
|
|
sink.put1(0x0f);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
/// Emit three-byte opcode (0F 3[8A] XX) with mandatory prefix.
|
|
fn put_mp3<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x8800, 0x0800, "Invalid encoding bits for Mp3*");
|
|
debug_assert_eq!(rex, BASE_REX, "Invalid registers for REX-less Mp3 encoding");
|
|
let enc = EncodingBits::from(bits);
|
|
sink.put1(PREFIX[(enc.pp() - 1) as usize]);
|
|
sink.put1(0x0f);
|
|
sink.put1(OP3_BYTE2[(enc.mm() - 2) as usize]);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
/// Emit three-byte opcode (0F 3[8A] XX) with mandatory prefix and REX
|
|
fn put_rexmp3<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(bits & 0x0800, 0x0800, "Invalid encoding bits for RexMp3*");
|
|
let enc = EncodingBits::from(bits);
|
|
sink.put1(PREFIX[(enc.pp() - 1) as usize]);
|
|
rex_prefix(bits, rex, sink);
|
|
sink.put1(0x0f);
|
|
sink.put1(OP3_BYTE2[(enc.mm() - 2) as usize]);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
/// Emit three-byte opcode (0F 3[8A] XX) with mandatory prefix and an inferred REX prefix.
|
|
fn put_dynrexmp3<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
|
|
debug_assert_eq!(
|
|
bits & 0x0800,
|
|
0x0800,
|
|
"Invalid encoding bits for DynRexMp3*"
|
|
);
|
|
let enc = EncodingBits::from(bits);
|
|
sink.put1(PREFIX[(enc.pp() - 1) as usize]);
|
|
if needs_rex(rex) {
|
|
rex_prefix(bits, rex, sink);
|
|
}
|
|
sink.put1(0x0f);
|
|
sink.put1(OP3_BYTE2[(enc.mm() - 2) as usize]);
|
|
sink.put1(bits as u8);
|
|
}
|
|
|
|
/// Defines the EVEX context for the `L'`, `L`, and `b` bits (bits 6:4 of EVEX P2 byte). Table 2-36 in
|
|
/// section 2.6.10 (Intel Software Development Manual, volume 2A) describes how these bits can be
|
|
/// used together for certain classes of instructions; i.e., special care should be taken to ensure
|
|
/// that instructions use an applicable correct `EvexContext`. Table 2-39 contains cases where
|
|
/// opcodes can result in an #UD.
|
|
#[allow(dead_code)]
|
|
enum EvexContext {
|
|
RoundingRegToRegFP {
|
|
rc: EvexRoundingControl,
|
|
},
|
|
NoRoundingFP {
|
|
sae: bool,
|
|
length: EvexVectorLength,
|
|
},
|
|
MemoryOp {
|
|
broadcast: bool,
|
|
length: EvexVectorLength,
|
|
},
|
|
Other {
|
|
length: EvexVectorLength,
|
|
},
|
|
}
|
|
|
|
impl EvexContext {
|
|
/// Encode the `L'`, `L`, and `b` bits (bits 6:4 of EVEX P2 byte) for merging with the P2 byte.
|
|
fn bits(&self) -> u8 {
|
|
match self {
|
|
Self::RoundingRegToRegFP { rc } => 0b001 | rc.bits() << 1,
|
|
Self::NoRoundingFP { sae, length } => (*sae as u8) | length.bits() << 1,
|
|
Self::MemoryOp { broadcast, length } => (*broadcast as u8) | length.bits() << 1,
|
|
Self::Other { length } => length.bits() << 1,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The EVEX format allows choosing a vector length in the `L'` and `L` bits; see `EvexContext`.
|
|
#[allow(dead_code)]
|
|
enum EvexVectorLength {
|
|
V128,
|
|
V256,
|
|
V512,
|
|
}
|
|
|
|
impl EvexVectorLength {
|
|
/// Encode the `L'` and `L` bits for merging with the P2 byte.
|
|
fn bits(&self) -> u8 {
|
|
match self {
|
|
Self::V128 => 0b00,
|
|
Self::V256 => 0b01,
|
|
Self::V512 => 0b10,
|
|
// 0b11 is reserved (#UD).
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The EVEX format allows defining rounding control in the `L'` and `L` bits; see `EvexContext`.
|
|
#[allow(dead_code)]
|
|
enum EvexRoundingControl {
|
|
RNE,
|
|
RD,
|
|
RU,
|
|
RZ,
|
|
}
|
|
|
|
impl EvexRoundingControl {
|
|
/// Encode the `L'` and `L` bits for merging with the P2 byte.
|
|
fn bits(&self) -> u8 {
|
|
match self {
|
|
Self::RNE => 0b00,
|
|
Self::RD => 0b01,
|
|
Self::RU => 0b10,
|
|
Self::RZ => 0b11,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Defines the EVEX masking behavior; masking support is described in section 2.6.4 of the Intel
|
|
/// Software Development Manual, volume 2A.
|
|
#[allow(dead_code)]
|
|
enum EvexMasking {
|
|
None,
|
|
Merging { k: u8 },
|
|
Zeroing { k: u8 },
|
|
}
|
|
|
|
impl EvexMasking {
|
|
/// Encode the `z` bit for merging with the P2 byte.
|
|
fn z_bit(&self) -> u8 {
|
|
match self {
|
|
Self::None | Self::Merging { .. } => 0,
|
|
Self::Zeroing { .. } => 1,
|
|
}
|
|
}
|
|
|
|
/// Encode the `aaa` bits for merging with the P2 byte.
|
|
fn aaa_bits(&self) -> u8 {
|
|
match self {
|
|
Self::None => 0b000,
|
|
Self::Merging { k } | Self::Zeroing { k } => {
|
|
debug_assert!(*k <= 7);
|
|
*k
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Encode an EVEX prefix, including the instruction opcode. To match the current recipe
|
|
/// convention, the ModR/M byte is written separately in the recipe. This EVEX encoding function
|
|
/// only encodes the `reg` (operand 1), `vvvv` (operand 2), `rm` (operand 3) form; other forms are
|
|
/// possible (see section 2.6.2, Intel Software Development Manual, volume 2A), requiring
|
|
/// refactoring of this function or separate functions for each form (e.g. as for the REX prefix).
|
|
fn put_evex<CS: CodeSink + ?Sized>(
|
|
bits: u16,
|
|
reg: RegUnit,
|
|
vvvvv: RegUnit,
|
|
rm: RegUnit,
|
|
context: EvexContext,
|
|
masking: EvexMasking,
|
|
sink: &mut CS,
|
|
) {
|
|
let enc = EncodingBits::from(bits);
|
|
|
|
// EVEX prefix.
|
|
sink.put1(0x62);
|
|
|
|
debug_assert!(enc.mm() < 0b100);
|
|
let mut p0 = enc.mm() & 0b11;
|
|
p0 |= evex2(rm, reg) << 4; // bits 3:2 are always unset
|
|
sink.put1(p0);
|
|
|
|
let mut p1 = enc.pp() | 0b100; // bit 2 is always set
|
|
p1 |= (!(vvvvv as u8) & 0b1111) << 3;
|
|
p1 |= (enc.rex_w() & 0b1) << 7;
|
|
sink.put1(p1);
|
|
|
|
let mut p2 = masking.aaa_bits();
|
|
p2 |= (!(vvvvv as u8 >> 4) & 0b1) << 3;
|
|
p2 |= context.bits() << 4;
|
|
p2 |= masking.z_bit() << 7;
|
|
sink.put1(p2);
|
|
|
|
// Opcode
|
|
sink.put1(enc.opcode_byte());
|
|
|
|
// ModR/M byte placed in recipe
|
|
}
|
|
|
|
/// Emit a ModR/M byte for reg-reg operands.
|
|
fn modrm_rr<CS: CodeSink + ?Sized>(rm: RegUnit, reg: RegUnit, sink: &mut CS) {
|
|
let reg = reg as u8 & 7;
|
|
let rm = rm as u8 & 7;
|
|
let mut b = 0b11000000;
|
|
b |= reg << 3;
|
|
b |= rm;
|
|
sink.put1(b);
|
|
}
|
|
|
|
/// Emit a ModR/M byte where the reg bits are part of the opcode.
|
|
fn modrm_r_bits<CS: CodeSink + ?Sized>(rm: RegUnit, bits: u16, sink: &mut CS) {
|
|
let reg = (bits >> 12) as u8 & 7;
|
|
let rm = rm as u8 & 7;
|
|
let mut b = 0b11000000;
|
|
b |= reg << 3;
|
|
b |= rm;
|
|
sink.put1(b);
|
|
}
|
|
|
|
/// Emit a mode 00 ModR/M byte. This is a register-indirect addressing mode with no offset.
|
|
/// Registers %rsp and %rbp are invalid for `rm`, %rsp indicates a SIB byte, and %rbp indicates an
|
|
/// absolute immediate 32-bit address.
|
|
fn modrm_rm<CS: CodeSink + ?Sized>(rm: RegUnit, reg: RegUnit, sink: &mut CS) {
|
|
let reg = reg as u8 & 7;
|
|
let rm = rm as u8 & 7;
|
|
let mut b = 0b00000000;
|
|
b |= reg << 3;
|
|
b |= rm;
|
|
sink.put1(b);
|
|
}
|
|
|
|
/// Emit a mode 00 Mod/RM byte, with a rip-relative displacement in 64-bit mode. Effective address
|
|
/// is calculated by adding displacement to 64-bit rip of next instruction. See intel Sw dev manual
|
|
/// section 2.2.1.6.
|
|
fn modrm_riprel<CS: CodeSink + ?Sized>(reg: RegUnit, sink: &mut CS) {
|
|
modrm_rm(0b101, reg, sink)
|
|
}
|
|
|
|
/// Emit a mode 01 ModR/M byte. This is a register-indirect addressing mode with 8-bit
|
|
/// displacement.
|
|
/// Register %rsp is invalid for `rm`. It indicates the presence of a SIB byte.
|
|
fn modrm_disp8<CS: CodeSink + ?Sized>(rm: RegUnit, reg: RegUnit, sink: &mut CS) {
|
|
let reg = reg as u8 & 7;
|
|
let rm = rm as u8 & 7;
|
|
let mut b = 0b01000000;
|
|
b |= reg << 3;
|
|
b |= rm;
|
|
sink.put1(b);
|
|
}
|
|
|
|
/// Emit a mode 10 ModR/M byte. This is a register-indirect addressing mode with 32-bit
|
|
/// displacement.
|
|
/// Register %rsp is invalid for `rm`. It indicates the presence of a SIB byte.
|
|
fn modrm_disp32<CS: CodeSink + ?Sized>(rm: RegUnit, reg: RegUnit, sink: &mut CS) {
|
|
let reg = reg as u8 & 7;
|
|
let rm = rm as u8 & 7;
|
|
let mut b = 0b10000000;
|
|
b |= reg << 3;
|
|
b |= rm;
|
|
sink.put1(b);
|
|
}
|
|
|
|
/// Emit a mode 00 ModR/M with a 100 RM indicating a SIB byte is present.
|
|
fn modrm_sib<CS: CodeSink + ?Sized>(reg: RegUnit, sink: &mut CS) {
|
|
modrm_rm(0b100, reg, sink);
|
|
}
|
|
|
|
/// Emit a mode 01 ModR/M with a 100 RM indicating a SIB byte and 8-bit
|
|
/// displacement are present.
|
|
fn modrm_sib_disp8<CS: CodeSink + ?Sized>(reg: RegUnit, sink: &mut CS) {
|
|
modrm_disp8(0b100, reg, sink);
|
|
}
|
|
|
|
/// Emit a mode 10 ModR/M with a 100 RM indicating a SIB byte and 32-bit
|
|
/// displacement are present.
|
|
fn modrm_sib_disp32<CS: CodeSink + ?Sized>(reg: RegUnit, sink: &mut CS) {
|
|
modrm_disp32(0b100, reg, sink);
|
|
}
|
|
|
|
/// Emit a SIB byte with a base register and no scale+index.
|
|
fn sib_noindex<CS: CodeSink + ?Sized>(base: RegUnit, sink: &mut CS) {
|
|
let base = base as u8 & 7;
|
|
// SIB SS_III_BBB.
|
|
let mut b = 0b00_100_000;
|
|
b |= base;
|
|
sink.put1(b);
|
|
}
|
|
|
|
/// Emit a SIB byte with a scale, base, and index.
|
|
fn sib<CS: CodeSink + ?Sized>(scale: u8, index: RegUnit, base: RegUnit, sink: &mut CS) {
|
|
// SIB SS_III_BBB.
|
|
debug_assert_eq!(scale & !0x03, 0, "Scale out of range");
|
|
let scale = scale & 3;
|
|
let index = index as u8 & 7;
|
|
let base = base as u8 & 7;
|
|
let b: u8 = (scale << 6) | (index << 3) | base;
|
|
sink.put1(b);
|
|
}
|
|
|
|
/// Get the low 4 bits of an opcode for an integer condition code.
|
|
///
|
|
/// Add this offset to a base opcode for:
|
|
///
|
|
/// ---- 0x70: Short conditional branch.
|
|
/// 0x0f 0x80: Long conditional branch.
|
|
/// 0x0f 0x90: SetCC.
|
|
///
|
|
fn icc2opc(cond: IntCC) -> u16 {
|
|
use crate::ir::condcodes::IntCC::*;
|
|
match cond {
|
|
Overflow => 0x0,
|
|
NotOverflow => 0x1,
|
|
UnsignedLessThan => 0x2,
|
|
UnsignedGreaterThanOrEqual => 0x3,
|
|
Equal => 0x4,
|
|
NotEqual => 0x5,
|
|
UnsignedLessThanOrEqual => 0x6,
|
|
UnsignedGreaterThan => 0x7,
|
|
// 0x8 = Sign.
|
|
// 0x9 = !Sign.
|
|
// 0xa = Parity even.
|
|
// 0xb = Parity odd.
|
|
SignedLessThan => 0xc,
|
|
SignedGreaterThanOrEqual => 0xd,
|
|
SignedLessThanOrEqual => 0xe,
|
|
SignedGreaterThan => 0xf,
|
|
}
|
|
}
|
|
|
|
/// Get the low 4 bits of an opcode for a floating point condition code.
|
|
///
|
|
/// The ucomiss/ucomisd instructions set the FLAGS bits CF/PF/CF like this:
|
|
///
|
|
/// ZPC OSA
|
|
/// UN 111 000
|
|
/// GT 000 000
|
|
/// LT 001 000
|
|
/// EQ 100 000
|
|
///
|
|
/// Not all floating point condition codes are supported.
|
|
fn fcc2opc(cond: FloatCC) -> u16 {
|
|
use crate::ir::condcodes::FloatCC::*;
|
|
match cond {
|
|
Ordered => 0xb, // EQ|LT|GT => *np (P=0)
|
|
Unordered => 0xa, // UN => *p (P=1)
|
|
OrderedNotEqual => 0x5, // LT|GT => *ne (Z=0),
|
|
UnorderedOrEqual => 0x4, // UN|EQ => *e (Z=1)
|
|
GreaterThan => 0x7, // GT => *a (C=0&Z=0)
|
|
GreaterThanOrEqual => 0x3, // GT|EQ => *ae (C=0)
|
|
UnorderedOrLessThan => 0x2, // UN|LT => *b (C=1)
|
|
UnorderedOrLessThanOrEqual => 0x6, // UN|LT|EQ => *be (Z=1|C=1)
|
|
Equal | // EQ
|
|
NotEqual | // UN|LT|GT
|
|
LessThan | // LT
|
|
LessThanOrEqual | // LT|EQ
|
|
UnorderedOrGreaterThan | // UN|GT
|
|
UnorderedOrGreaterThanOrEqual // UN|GT|EQ
|
|
=> panic!("{} not supported", cond),
|
|
}
|
|
}
|
|
|
|
/// Emit a single-byte branch displacement to `destination`.
|
|
fn disp1<CS: CodeSink + ?Sized>(destination: Block, func: &Function, sink: &mut CS) {
|
|
let delta = func.offsets[destination].wrapping_sub(sink.offset() + 1);
|
|
sink.put1(delta as u8);
|
|
}
|
|
|
|
/// Emit a four-byte branch displacement to `destination`.
|
|
fn disp4<CS: CodeSink + ?Sized>(destination: Block, func: &Function, sink: &mut CS) {
|
|
let delta = func.offsets[destination].wrapping_sub(sink.offset() + 4);
|
|
sink.put4(delta);
|
|
}
|
|
|
|
/// Emit a four-byte displacement to jump table `jt`.
|
|
fn jt_disp4<CS: CodeSink + ?Sized>(jt: JumpTable, func: &Function, sink: &mut CS) {
|
|
let delta = func.jt_offsets[jt].wrapping_sub(sink.offset() + 4);
|
|
sink.put4(delta);
|
|
sink.reloc_jt(Reloc::X86PCRelRodata4, jt);
|
|
}
|
|
|
|
/// Emit a four-byte displacement to `constant`.
|
|
fn const_disp4<CS: CodeSink + ?Sized>(constant: Constant, func: &Function, sink: &mut CS) {
|
|
let offset = func.dfg.constants.get_offset(constant);
|
|
let delta = offset.wrapping_sub(sink.offset() + 4);
|
|
sink.put4(delta);
|
|
sink.reloc_constant(Reloc::X86PCRelRodata4, offset);
|
|
}
|