Nick Fitzgerald 3a6dd832c0 Harvest left-hand side superoptimization candidates.
Given a clif function, harvest all its integer subexpressions, so that they can
be fed into [Souper](https://github.com/google/souper) as candidates for
superoptimization. For some of these candidates, Souper will successfully
synthesize a right-hand side that is equivalent but has lower cost than the
left-hand side. Then, we can combine these left- and right-hand sides into a
complete optimization, and add it to our peephole passes.

To harvest the expression that produced a given value `x`, we do a post-order
traversal of the dataflow graph starting from `x`. As we do this traversal, we
maintain a map from clif values to their translated Souper values. We stop
traversing when we reach anything that can't be translated into Souper IR: a
memory load, a float-to-int conversion, a block parameter, etc. For values
produced by these instructions, we create a Souper `var`, which is an input
variable to the optimization. For instructions that have a direct mapping into
Souper IR, we get the Souper version of each of its operands and then create the
Souper version of the instruction itself. It should now be clear why we do a
post-order traversal: we need an instruction's translated operands in order to
translate the instruction itself. Once this instruction is translated, we update
the clif-to-souper map with this new translation so that any other instruction
that uses this result as an operand has access to the translated value. When the
traversal is complete we return the translation of `x` as the root of left-hand
side candidate.
2020-09-14 16:27:47 -07:00
2020-04-22 15:54:46 -07:00
2020-08-14 11:47:27 -04:00
2019-11-08 17:15:19 -08:00
2020-08-21 18:03:50 +01:00
2020-09-02 13:18:09 -07:00
2020-02-28 09:16:05 -08:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat min rustc Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS with a small install script:

$ curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.

  • Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!.


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%