Files
wasmtime/cranelift/codegen/src/isa/aarch64/abi.rs
Chris Fallin 2d5db92a9e Rework/simplify unwind infrastructure and implement Windows unwind.
Our previous implementation of unwind infrastructure was somewhat
complex and brittle: it parsed generated instructions in order to
reverse-engineer unwind info from prologues. It also relied on some
fragile linkage to communicate instruction-layout information that VCode
was not designed to provide.

A much simpler, more reliable, and easier-to-reason-about approach is to
embed unwind directives as pseudo-instructions in the prologue as we
generate it. That way, we can say what we mean and just emit it
directly.

The usual reasoning that leads to the reverse-engineering approach is
that metadata is hard to keep in sync across optimization passes; but
here, (i) prologues are generated at the very end of the pipeline, and
(ii) if we ever do a post-prologue-gen optimization, we can treat unwind
directives as black boxes with unknown side-effects, just as we do for
some other pseudo-instructions today.

It turns out that it was easier to just build this for both x64 and
aarch64 (since they share a factored-out ABI implementation), and wire
up the platform-specific unwind-info generation for Windows and SystemV.
Now we have simpler unwind on all platforms and we can delete the old
unwind infra as soon as we remove the old backend.

There were a few consequences to supporting Fastcall unwind in
particular that led to a refactor of the common ABI. Windows only
supports naming clobbered-register save locations within 240 bytes of
the frame-pointer register, whatever one chooses that to be (RSP or
RBP). We had previously saved clobbers below the fixed frame (and below
nominal-SP). The 240-byte range has to include the old RBP too, so we're
forced to place clobbers at the top of the frame, just below saved
RBP/RIP. This is fine; we always keep a frame pointer anyway because we
use it to refer to stack args. It does mean that offsets of fixed-frame
slots (spillslots, stackslots) from RBP are no longer known before we do
regalloc, so if we ever want to index these off of RBP rather than
nominal-SP because we add support for `alloca` (dynamic frame growth),
then we'll need a "nominal-BP" mode that is resolved after regalloc and
clobber-save code is generated. I added a comment to this effect in
`abi_impl.rs`.

The above refactor touched both x64 and aarch64 because of shared code.
This had a further effect in that the old aarch64 prologue generation
subtracted from `sp` once to allocate space, then used stores to `[sp,
offset]` to save clobbers. Unfortunately the offset only has 7-bit
range, so if there are enough clobbered registers (and there can be --
aarch64 has 384 bytes of registers; at least one unit test hits this)
the stores/loads will be out-of-range. I really don't want to synthesize
large-offset sequences here; better to go back to the simpler
pre-index/post-index `stp r1, r2, [sp, #-16]` form that works just like
a "push". It's likely not much worse microarchitecturally (dependence
chain on SP, but oh well) and it actually saves an instruction if
there's no other frame to allocate. As a further advantage, it's much
simpler to understand; simpler is usually better.

This PR adds the new backend on Windows to CI as well.
2021-03-11 20:03:52 -08:00

960 lines
35 KiB
Rust

//! Implementation of a standard AArch64 ABI.
use crate::ir;
use crate::ir::types;
use crate::ir::types::*;
use crate::ir::MemFlags;
use crate::ir::Opcode;
use crate::ir::{ExternalName, LibCall};
use crate::isa;
use crate::isa::aarch64::{inst::EmitState, inst::*};
use crate::isa::unwind::UnwindInst;
use crate::machinst::*;
use crate::settings;
use crate::{CodegenError, CodegenResult};
use alloc::boxed::Box;
use alloc::vec::Vec;
use regalloc::{RealReg, Reg, RegClass, Set, Writable};
use smallvec::{smallvec, SmallVec};
// We use a generic implementation that factors out AArch64 and x64 ABI commonalities, because
// these ABIs are very similar.
/// Support for the AArch64 ABI from the callee side (within a function body).
pub(crate) type AArch64ABICallee = ABICalleeImpl<AArch64MachineDeps>;
/// Support for the AArch64 ABI from the caller side (at a callsite).
pub(crate) type AArch64ABICaller = ABICallerImpl<AArch64MachineDeps>;
// Spidermonkey specific ABI convention.
/// This is SpiderMonkey's `WasmTableCallSigReg`.
static BALDRDASH_SIG_REG: u8 = 10;
/// This is SpiderMonkey's `WasmTlsReg`.
static BALDRDASH_TLS_REG: u8 = 23;
/// Offset in stack-arg area to callee-TLS slot in Baldrdash-2020 calling convention.
static BALDRDASH_CALLEE_TLS_OFFSET: i64 = 0;
/// Offset in stack-arg area to caller-TLS slot in Baldrdash-2020 calling convention.
static BALDRDASH_CALLER_TLS_OFFSET: i64 = 8;
// These two lists represent the registers the JIT may *not* use at any point in generated code.
//
// So these are callee-preserved from the JIT's point of view, and every register not in this list
// has to be caller-preserved by definition.
//
// Keep these lists in sync with the NonAllocatableMask set in Spidermonkey's
// Architecture-arm64.cpp.
// Indexed by physical register number.
#[rustfmt::skip]
static BALDRDASH_JIT_CALLEE_SAVED_GPR: &[bool] = &[
/* 0 = */ false, false, false, false, false, false, false, false,
/* 8 = */ false, false, false, false, false, false, false, false,
/* 16 = */ true /* x16 / ip1 */, true /* x17 / ip2 */, true /* x18 / TLS */, false,
/* 20 = */ false, false, false, false,
/* 24 = */ false, false, false, false,
// There should be 28, the pseudo stack pointer in this list, however the wasm stubs trash it
// gladly right now.
/* 28 = */ false, false, true /* x30 = FP */, false /* x31 = SP */
];
#[rustfmt::skip]
static BALDRDASH_JIT_CALLEE_SAVED_FPU: &[bool] = &[
/* 0 = */ false, false, false, false, false, false, false, false,
/* 8 = */ false, false, false, false, false, false, false, false,
/* 16 = */ false, false, false, false, false, false, false, false,
/* 24 = */ false, false, false, false, false, false, false, true /* v31 / d31 */
];
/// This is the limit for the size of argument and return-value areas on the
/// stack. We place a reasonable limit here to avoid integer overflow issues
/// with 32-bit arithmetic: for now, 128 MB.
static STACK_ARG_RET_SIZE_LIMIT: u64 = 128 * 1024 * 1024;
/// Try to fill a Baldrdash register, returning it if it was found.
fn try_fill_baldrdash_reg(call_conv: isa::CallConv, param: &ir::AbiParam) -> Option<ABIArg> {
if call_conv.extends_baldrdash() {
match &param.purpose {
&ir::ArgumentPurpose::VMContext => {
// This is SpiderMonkey's `WasmTlsReg`.
Some(ABIArg::reg(
xreg(BALDRDASH_TLS_REG).to_real_reg(),
ir::types::I64,
param.extension,
param.purpose,
))
}
&ir::ArgumentPurpose::SignatureId => {
// This is SpiderMonkey's `WasmTableCallSigReg`.
Some(ABIArg::reg(
xreg(BALDRDASH_SIG_REG).to_real_reg(),
ir::types::I64,
param.extension,
param.purpose,
))
}
&ir::ArgumentPurpose::CalleeTLS => {
// This is SpiderMonkey's callee TLS slot in the extended frame of Wasm's ABI-2020.
assert!(call_conv == isa::CallConv::Baldrdash2020);
Some(ABIArg::stack(
BALDRDASH_CALLEE_TLS_OFFSET,
ir::types::I64,
ir::ArgumentExtension::None,
param.purpose,
))
}
&ir::ArgumentPurpose::CallerTLS => {
// This is SpiderMonkey's caller TLS slot in the extended frame of Wasm's ABI-2020.
assert!(call_conv == isa::CallConv::Baldrdash2020);
Some(ABIArg::stack(
BALDRDASH_CALLER_TLS_OFFSET,
ir::types::I64,
ir::ArgumentExtension::None,
param.purpose,
))
}
_ => None,
}
} else {
None
}
}
impl Into<AMode> for StackAMode {
fn into(self) -> AMode {
match self {
StackAMode::FPOffset(off, ty) => AMode::FPOffset(off, ty),
StackAMode::NominalSPOffset(off, ty) => AMode::NominalSPOffset(off, ty),
StackAMode::SPOffset(off, ty) => AMode::SPOffset(off, ty),
}
}
}
// Returns the size of stack space needed to store the
// `int_reg` and `vec_reg`.
fn saved_reg_stack_size(
int_reg: &[Writable<RealReg>],
vec_reg: &[Writable<RealReg>],
) -> (usize, usize) {
// Round up to multiple of 2, to keep 16-byte stack alignment.
let int_save_bytes = (int_reg.len() + (int_reg.len() & 1)) * 8;
let vec_save_bytes = vec_reg.len() * 16;
(int_save_bytes, vec_save_bytes)
}
/// AArch64-specific ABI behavior. This struct just serves as an implementation
/// point for the trait; it is never actually instantiated.
pub(crate) struct AArch64MachineDeps;
impl ABIMachineSpec for AArch64MachineDeps {
type I = Inst;
fn word_bits() -> u32 {
64
}
/// Return required stack alignment in bytes.
fn stack_align(_call_conv: isa::CallConv) -> u32 {
16
}
fn compute_arg_locs(
call_conv: isa::CallConv,
_flags: &settings::Flags,
params: &[ir::AbiParam],
args_or_rets: ArgsOrRets,
add_ret_area_ptr: bool,
) -> CodegenResult<(Vec<ABIArg>, i64, Option<usize>)> {
let is_baldrdash = call_conv.extends_baldrdash();
let has_baldrdash_tls = call_conv == isa::CallConv::Baldrdash2020;
// See AArch64 ABI (https://c9x.me/compile/bib/abi-arm64.pdf), sections 5.4.
let mut next_xreg = 0;
let mut next_vreg = 0;
let mut next_stack: u64 = 0;
let mut ret = vec![];
if args_or_rets == ArgsOrRets::Args && has_baldrdash_tls {
// Baldrdash ABI-2020 always has two stack-arg slots reserved, for the callee and
// caller TLS-register values, respectively.
next_stack = 16;
}
// Note on return values: on the regular non-baldrdash ABI, we may return values in 8
// registers for V128 and I64 registers independently of the number of register values
// returned in the other class. That is, we can return values in up to 8 integer and 8
// vector registers at once.
// In Baldrdash, we can only use one register for return value for all the register
// classes. That is, we can't return values in both one integer and one vector register;
// only one return value may be in a register.
let (max_per_class_reg_vals, mut remaining_reg_vals) = match (args_or_rets, is_baldrdash) {
(ArgsOrRets::Args, _) => (8, 16), // x0-x7 and v0-v7
(ArgsOrRets::Rets, false) => (8, 16), // x0-x7 and v0-v7
(ArgsOrRets::Rets, true) => (1, 1), // x0 or v0, but not both
};
for i in 0..params.len() {
// Process returns backward, according to the SpiderMonkey ABI (which we
// adopt internally if `is_baldrdash` is set).
let param = match (args_or_rets, is_baldrdash) {
(ArgsOrRets::Args, _) => &params[i],
(ArgsOrRets::Rets, false) => &params[i],
(ArgsOrRets::Rets, true) => &params[params.len() - 1 - i],
};
// Validate "purpose".
match &param.purpose {
&ir::ArgumentPurpose::VMContext
| &ir::ArgumentPurpose::Normal
| &ir::ArgumentPurpose::StackLimit
| &ir::ArgumentPurpose::SignatureId
| &ir::ArgumentPurpose::CallerTLS
| &ir::ArgumentPurpose::CalleeTLS
| &ir::ArgumentPurpose::StructReturn
| &ir::ArgumentPurpose::StructArgument(_) => {}
_ => panic!(
"Unsupported argument purpose {:?} in signature: {:?}",
param.purpose, params
),
}
assert!(
legal_type_for_machine(param.value_type),
"Invalid type for AArch64: {:?}",
param.value_type
);
let (rcs, _) = Inst::rc_for_type(param.value_type).unwrap();
assert!(rcs.len() == 1, "Multi-reg values not supported yet");
let rc = rcs[0];
let next_reg = match rc {
RegClass::I64 => &mut next_xreg,
RegClass::V128 => &mut next_vreg,
_ => panic!("Invalid register class: {:?}", rc),
};
if let Some(param) = try_fill_baldrdash_reg(call_conv, param) {
assert!(rc == RegClass::I64);
ret.push(param);
} else if let ir::ArgumentPurpose::StructArgument(size) = param.purpose {
let offset = next_stack as i64;
let size = size as u64;
assert!(size % 8 == 0, "StructArgument size is not properly aligned");
next_stack += size;
ret.push(ABIArg::StructArg {
offset,
size,
purpose: param.purpose,
});
} else if *next_reg < max_per_class_reg_vals && remaining_reg_vals > 0 {
let reg = match rc {
RegClass::I64 => xreg(*next_reg),
RegClass::V128 => vreg(*next_reg),
_ => unreachable!(),
};
ret.push(ABIArg::reg(
reg.to_real_reg(),
param.value_type,
param.extension,
param.purpose,
));
*next_reg += 1;
remaining_reg_vals -= 1;
} else {
// Compute size. Every arg takes a minimum slot of 8 bytes. (16-byte
// stack alignment happens separately after all args.)
let size = (ty_bits(param.value_type) / 8) as u64;
let size = std::cmp::max(size, 8);
// Align.
debug_assert!(size.is_power_of_two());
next_stack = align_to(next_stack, size);
ret.push(ABIArg::stack(
next_stack as i64,
param.value_type,
param.extension,
param.purpose,
));
next_stack += size;
}
}
if args_or_rets == ArgsOrRets::Rets && is_baldrdash {
ret.reverse();
}
let extra_arg = if add_ret_area_ptr {
debug_assert!(args_or_rets == ArgsOrRets::Args);
if next_xreg < max_per_class_reg_vals && remaining_reg_vals > 0 {
ret.push(ABIArg::reg(
xreg(next_xreg).to_real_reg(),
I64,
ir::ArgumentExtension::None,
ir::ArgumentPurpose::Normal,
));
} else {
ret.push(ABIArg::stack(
next_stack as i64,
I64,
ir::ArgumentExtension::None,
ir::ArgumentPurpose::Normal,
));
next_stack += 8;
}
Some(ret.len() - 1)
} else {
None
};
next_stack = align_to(next_stack, 16);
// To avoid overflow issues, limit the arg/return size to something
// reasonable -- here, 128 MB.
if next_stack > STACK_ARG_RET_SIZE_LIMIT {
return Err(CodegenError::ImplLimitExceeded);
}
Ok((ret, next_stack as i64, extra_arg))
}
fn fp_to_arg_offset(call_conv: isa::CallConv, flags: &settings::Flags) -> i64 {
if call_conv.extends_baldrdash() {
let num_words = flags.baldrdash_prologue_words() as i64;
debug_assert!(num_words > 0, "baldrdash must set baldrdash_prologue_words");
debug_assert_eq!(num_words % 2, 0, "stack must be 16-aligned");
num_words * 8
} else {
16 // frame pointer + return address.
}
}
fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Inst {
Inst::gen_load(into_reg, mem.into(), ty, MemFlags::trusted())
}
fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Inst {
Inst::gen_store(mem.into(), from_reg, ty, MemFlags::trusted())
}
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Inst {
Inst::gen_move(to_reg, from_reg, ty)
}
fn gen_extend(
to_reg: Writable<Reg>,
from_reg: Reg,
signed: bool,
from_bits: u8,
to_bits: u8,
) -> Inst {
assert!(from_bits < to_bits);
Inst::Extend {
rd: to_reg,
rn: from_reg,
signed,
from_bits,
to_bits,
}
}
fn gen_ret() -> Inst {
Inst::Ret
}
fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallInstVec<Inst> {
let imm = imm as u64;
let mut insts = SmallVec::new();
if let Some(imm12) = Imm12::maybe_from_u64(imm) {
insts.push(Inst::AluRRImm12 {
alu_op: ALUOp::Add64,
rd: into_reg,
rn: from_reg,
imm12,
});
} else {
let scratch2 = writable_tmp2_reg();
assert_ne!(scratch2.to_reg(), from_reg);
insts.extend(Inst::load_constant(scratch2, imm.into()));
insts.push(Inst::AluRRRExtend {
alu_op: ALUOp::Add64,
rd: into_reg,
rn: from_reg,
rm: scratch2.to_reg(),
extendop: ExtendOp::UXTX,
});
}
insts
}
fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Inst> {
let mut insts = SmallVec::new();
insts.push(Inst::AluRRRExtend {
alu_op: ALUOp::SubS64,
rd: writable_zero_reg(),
rn: stack_reg(),
rm: limit_reg,
extendop: ExtendOp::UXTX,
});
insts.push(Inst::TrapIf {
trap_code: ir::TrapCode::StackOverflow,
// Here `Lo` == "less than" when interpreting the two
// operands as unsigned integers.
kind: CondBrKind::Cond(Cond::Lo),
});
insts
}
fn gen_epilogue_placeholder() -> Inst {
Inst::EpiloguePlaceholder
}
fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, _ty: Type) -> Inst {
let mem = mem.into();
Inst::LoadAddr { rd: into_reg, mem }
}
fn get_stacklimit_reg() -> Reg {
spilltmp_reg()
}
fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Inst {
let mem = AMode::RegOffset(base, offset as i64, ty);
Inst::gen_load(into_reg, mem, ty, MemFlags::trusted())
}
fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Inst {
let mem = AMode::RegOffset(base, offset as i64, ty);
Inst::gen_store(mem, from_reg, ty, MemFlags::trusted())
}
fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Inst> {
if amount == 0 {
return SmallVec::new();
}
let (amount, is_sub) = if amount > 0 {
(amount as u64, false)
} else {
(-amount as u64, true)
};
let alu_op = if is_sub { ALUOp::Sub64 } else { ALUOp::Add64 };
let mut ret = SmallVec::new();
if let Some(imm12) = Imm12::maybe_from_u64(amount) {
let adj_inst = Inst::AluRRImm12 {
alu_op,
rd: writable_stack_reg(),
rn: stack_reg(),
imm12,
};
ret.push(adj_inst);
} else {
let tmp = writable_spilltmp_reg();
let const_inst = Inst::load_constant(tmp, amount);
let adj_inst = Inst::AluRRRExtend {
alu_op,
rd: writable_stack_reg(),
rn: stack_reg(),
rm: tmp.to_reg(),
extendop: ExtendOp::UXTX,
};
ret.extend(const_inst);
ret.push(adj_inst);
}
ret
}
fn gen_nominal_sp_adj(offset: i32) -> Inst {
Inst::VirtualSPOffsetAdj {
offset: offset as i64,
}
}
fn gen_prologue_frame_setup(flags: &settings::Flags) -> SmallInstVec<Inst> {
let mut insts = SmallVec::new();
// stp fp (x29), lr (x30), [sp, #-16]!
insts.push(Inst::StoreP64 {
rt: fp_reg(),
rt2: link_reg(),
mem: PairAMode::PreIndexed(
writable_stack_reg(),
SImm7Scaled::maybe_from_i64(-16, types::I64).unwrap(),
),
flags: MemFlags::trusted(),
});
if flags.unwind_info() {
insts.push(Inst::Unwind {
inst: UnwindInst::PushFrameRegs {
offset_upward_to_caller_sp: 16, // FP, LR
},
});
}
// mov fp (x29), sp. This uses the ADDI rd, rs, 0 form of `MOV` because
// the usual encoding (`ORR`) does not work with SP.
insts.push(Inst::AluRRImm12 {
alu_op: ALUOp::Add64,
rd: writable_fp_reg(),
rn: stack_reg(),
imm12: Imm12 {
bits: 0,
shift12: false,
},
});
insts
}
fn gen_epilogue_frame_restore(_: &settings::Flags) -> SmallInstVec<Inst> {
let mut insts = SmallVec::new();
// N.B.: sp is already adjusted to the appropriate place by the
// clobber-restore code (which also frees the fixed frame). Hence, there
// is no need for the usual `mov sp, fp` here.
// `ldp fp, lr, [sp], #16`
insts.push(Inst::LoadP64 {
rt: writable_fp_reg(),
rt2: writable_link_reg(),
mem: PairAMode::PostIndexed(
writable_stack_reg(),
SImm7Scaled::maybe_from_i64(16, types::I64).unwrap(),
),
flags: MemFlags::trusted(),
});
insts
}
fn gen_probestack(_: u32) -> SmallInstVec<Self::I> {
// TODO: implement if we ever require stack probes on an AArch64 host
// (unlikely unless Lucet is ported)
smallvec![]
}
// Returns stack bytes used as well as instructions. Does not adjust
// nominal SP offset; abi_impl generic code will do that.
fn gen_clobber_save(
call_conv: isa::CallConv,
flags: &settings::Flags,
clobbers: &Set<Writable<RealReg>>,
fixed_frame_storage_size: u32,
) -> (u64, SmallVec<[Inst; 16]>) {
let mut insts = SmallVec::new();
let (clobbered_int, clobbered_vec) = get_regs_saved_in_prologue(call_conv, clobbers);
let (int_save_bytes, vec_save_bytes) = saved_reg_stack_size(&clobbered_int, &clobbered_vec);
let total_save_bytes = int_save_bytes + vec_save_bytes;
let clobber_size = total_save_bytes as i32;
if flags.unwind_info() {
// The *unwind* frame (but not the actual frame) starts at the
// clobbers, just below the saved FP/LR pair.
insts.push(Inst::Unwind {
inst: UnwindInst::DefineNewFrame {
offset_downward_to_clobbers: clobber_size as u32,
offset_upward_to_caller_sp: 16, // FP, LR
},
});
}
// We use pre-indexed addressing modes here, rather than the possibly
// more efficient "subtract sp once then used fixed offsets" scheme,
// because (i) we cannot necessarily guarantee that the offset of a
// clobber-save slot will be within a SImm7Scaled (+504-byte) offset
// range of the whole frame including other slots, it is more complex to
// conditionally generate a two-stage SP adjustment (clobbers then fixed
// frame) otherwise, and generally we just want to maintain simplicity
// here for maintainability. Because clobbers are at the top of the
// frame, just below FP, all that is necessary is to use the pre-indexed
// "push" `[sp, #-16]!` addressing mode.
//
// `frame_offset` tracks offset above start-of-clobbers for unwind-info
// purposes.
let mut clobber_offset = clobber_size as u32;
for reg_pair in clobbered_int.chunks(2) {
let (r1, r2) = if reg_pair.len() == 2 {
// .to_reg().to_reg(): Writable<RealReg> --> RealReg --> Reg
(reg_pair[0].to_reg().to_reg(), reg_pair[1].to_reg().to_reg())
} else {
(reg_pair[0].to_reg().to_reg(), zero_reg())
};
debug_assert!(r1.get_class() == RegClass::I64);
debug_assert!(r2.get_class() == RegClass::I64);
// stp r1, r2, [sp, #-16]!
insts.push(Inst::StoreP64 {
rt: r1,
rt2: r2,
mem: PairAMode::PreIndexed(
writable_stack_reg(),
SImm7Scaled::maybe_from_i64(-16, types::I64).unwrap(),
),
flags: MemFlags::trusted(),
});
if flags.unwind_info() {
clobber_offset -= 8;
if r2 != zero_reg() {
insts.push(Inst::Unwind {
inst: UnwindInst::SaveReg {
clobber_offset,
reg: r2.to_real_reg(),
},
});
}
clobber_offset -= 8;
insts.push(Inst::Unwind {
inst: UnwindInst::SaveReg {
clobber_offset,
reg: r1.to_real_reg(),
},
});
}
}
for reg in clobbered_vec.iter() {
insts.push(Inst::FpuStore128 {
rd: reg.to_reg().to_reg(),
mem: AMode::PreIndexed(writable_stack_reg(), SImm9::maybe_from_i64(-16).unwrap()),
flags: MemFlags::trusted(),
});
if flags.unwind_info() {
clobber_offset -= 16;
insts.push(Inst::Unwind {
inst: UnwindInst::SaveReg {
clobber_offset,
reg: reg.to_reg(),
},
});
}
}
// Allocate the fixed frame below the clobbers if necessary.
if fixed_frame_storage_size > 0 {
insts.extend(Self::gen_sp_reg_adjust(-(fixed_frame_storage_size as i32)));
}
(total_save_bytes as u64, insts)
}
fn gen_clobber_restore(
call_conv: isa::CallConv,
flags: &settings::Flags,
clobbers: &Set<Writable<RealReg>>,
fixed_frame_storage_size: u32,
) -> SmallVec<[Inst; 16]> {
let mut insts = SmallVec::new();
let (clobbered_int, clobbered_vec) = get_regs_saved_in_prologue(call_conv, clobbers);
// Free the fixed frame if necessary.
if fixed_frame_storage_size > 0 {
insts.extend(Self::gen_sp_reg_adjust(fixed_frame_storage_size as i32));
}
for reg in clobbered_vec.iter().rev() {
insts.push(Inst::FpuLoad128 {
rd: Writable::from_reg(reg.to_reg().to_reg()),
mem: AMode::PostIndexed(writable_stack_reg(), SImm9::maybe_from_i64(16).unwrap()),
flags: MemFlags::trusted(),
});
}
for reg_pair in clobbered_int.chunks(2).rev() {
let (r1, r2) = if reg_pair.len() == 2 {
(
reg_pair[0].map(|r| r.to_reg()),
reg_pair[1].map(|r| r.to_reg()),
)
} else {
(reg_pair[0].map(|r| r.to_reg()), writable_zero_reg())
};
debug_assert!(r1.to_reg().get_class() == RegClass::I64);
debug_assert!(r2.to_reg().get_class() == RegClass::I64);
// ldp r1, r2, [sp], #16
insts.push(Inst::LoadP64 {
rt: r1,
rt2: r2,
mem: PairAMode::PostIndexed(
writable_stack_reg(),
SImm7Scaled::maybe_from_i64(16, I64).unwrap(),
),
flags: MemFlags::trusted(),
});
}
// If this is Baldrdash-2020, restore the callee (i.e., our) TLS
// register. We may have allocated it for something else and clobbered
// it, but the ABI expects us to leave the TLS register unchanged.
if call_conv == isa::CallConv::Baldrdash2020 {
let off = BALDRDASH_CALLEE_TLS_OFFSET + Self::fp_to_arg_offset(call_conv, flags);
insts.push(Inst::gen_load(
writable_xreg(BALDRDASH_TLS_REG),
AMode::UnsignedOffset(fp_reg(), UImm12Scaled::maybe_from_i64(off, I64).unwrap()),
I64,
MemFlags::trusted(),
));
}
insts
}
fn gen_call(
dest: &CallDest,
uses: Vec<Reg>,
defs: Vec<Writable<Reg>>,
opcode: ir::Opcode,
tmp: Writable<Reg>,
callee_conv: isa::CallConv,
caller_conv: isa::CallConv,
) -> SmallVec<[(InstIsSafepoint, Inst); 2]> {
let mut insts = SmallVec::new();
match &dest {
&CallDest::ExtName(ref name, RelocDistance::Near) => insts.push((
InstIsSafepoint::Yes,
Inst::Call {
info: Box::new(CallInfo {
dest: name.clone(),
uses,
defs,
opcode,
caller_callconv: caller_conv,
callee_callconv: callee_conv,
}),
},
)),
&CallDest::ExtName(ref name, RelocDistance::Far) => {
insts.push((
InstIsSafepoint::No,
Inst::LoadExtName {
rd: tmp,
name: Box::new(name.clone()),
offset: 0,
},
));
insts.push((
InstIsSafepoint::Yes,
Inst::CallInd {
info: Box::new(CallIndInfo {
rn: tmp.to_reg(),
uses,
defs,
opcode,
caller_callconv: caller_conv,
callee_callconv: callee_conv,
}),
},
));
}
&CallDest::Reg(reg) => insts.push((
InstIsSafepoint::Yes,
Inst::CallInd {
info: Box::new(CallIndInfo {
rn: *reg,
uses,
defs,
opcode,
caller_callconv: caller_conv,
callee_callconv: callee_conv,
}),
},
)),
}
insts
}
fn gen_memcpy(
call_conv: isa::CallConv,
dst: Reg,
src: Reg,
size: usize,
) -> SmallVec<[Self::I; 8]> {
// Baldrdash should not use struct args.
assert!(!call_conv.extends_baldrdash());
let mut insts = SmallVec::new();
let arg0 = writable_xreg(0);
let arg1 = writable_xreg(1);
let arg2 = writable_xreg(2);
insts.push(Inst::gen_move(arg0, dst, I64));
insts.push(Inst::gen_move(arg1, src, I64));
insts.extend(Inst::load_constant(arg2, size as u64).into_iter());
insts.push(Inst::Call {
info: Box::new(CallInfo {
dest: ExternalName::LibCall(LibCall::Memcpy),
uses: vec![arg0.to_reg(), arg1.to_reg(), arg2.to_reg()],
defs: Self::get_regs_clobbered_by_call(call_conv),
opcode: Opcode::Call,
caller_callconv: call_conv,
callee_callconv: call_conv,
}),
});
insts
}
fn get_number_of_spillslots_for_value(rc: RegClass, ty: Type) -> u32 {
// We allocate in terms of 8-byte slots.
match (rc, ty) {
(RegClass::I64, _) => 1,
(RegClass::V128, F32) | (RegClass::V128, F64) => 1,
(RegClass::V128, _) => 2,
_ => panic!("Unexpected register class!"),
}
}
/// Get the current virtual-SP offset from an instruction-emission state.
fn get_virtual_sp_offset_from_state(s: &EmitState) -> i64 {
s.virtual_sp_offset
}
/// Get the nominal-SP-to-FP offset from an instruction-emission state.
fn get_nominal_sp_to_fp(s: &EmitState) -> i64 {
s.nominal_sp_to_fp
}
fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> Vec<Writable<Reg>> {
let mut caller_saved = Vec::new();
for i in 0..29 {
let x = writable_xreg(i);
if is_reg_clobbered_by_call(call_conv_of_callee, x.to_reg().to_real_reg()) {
caller_saved.push(x);
}
}
for i in 0..32 {
let v = writable_vreg(i);
if is_reg_clobbered_by_call(call_conv_of_callee, v.to_reg().to_real_reg()) {
caller_saved.push(v);
}
}
caller_saved
}
fn get_ext_mode(
call_conv: isa::CallConv,
specified: ir::ArgumentExtension,
) -> ir::ArgumentExtension {
if call_conv.extends_baldrdash() {
// Baldrdash (SpiderMonkey) always extends args and return values to the full register.
specified
} else {
// No other supported ABI on AArch64 does so.
ir::ArgumentExtension::None
}
}
}
/// Is this type supposed to be seen on this machine? E.g. references of the
/// wrong width are invalid.
fn legal_type_for_machine(ty: Type) -> bool {
match ty {
R32 => false,
_ => true,
}
}
/// Is the given register saved in the prologue if clobbered, i.e., is it a
/// callee-save?
fn is_reg_saved_in_prologue(call_conv: isa::CallConv, r: RealReg) -> bool {
if call_conv.extends_baldrdash() {
match r.get_class() {
RegClass::I64 => {
let enc = r.get_hw_encoding();
return BALDRDASH_JIT_CALLEE_SAVED_GPR[enc];
}
RegClass::V128 => {
let enc = r.get_hw_encoding();
return BALDRDASH_JIT_CALLEE_SAVED_FPU[enc];
}
_ => unimplemented!("baldrdash callee saved on non-i64 reg classes"),
};
}
match r.get_class() {
RegClass::I64 => {
// x19 - x28 inclusive are callee-saves.
r.get_hw_encoding() >= 19 && r.get_hw_encoding() <= 28
}
RegClass::V128 => {
// v8 - v15 inclusive are callee-saves.
r.get_hw_encoding() >= 8 && r.get_hw_encoding() <= 15
}
_ => panic!("Unexpected RegClass"),
}
}
/// Return the set of all integer and vector registers that must be saved in the
/// prologue and restored in the epilogue, given the set of all registers
/// written by the function's body.
fn get_regs_saved_in_prologue(
call_conv: isa::CallConv,
regs: &Set<Writable<RealReg>>,
) -> (Vec<Writable<RealReg>>, Vec<Writable<RealReg>>) {
let mut int_saves = vec![];
let mut vec_saves = vec![];
for &reg in regs.iter() {
if is_reg_saved_in_prologue(call_conv, reg.to_reg()) {
match reg.to_reg().get_class() {
RegClass::I64 => int_saves.push(reg),
RegClass::V128 => vec_saves.push(reg),
_ => panic!("Unexpected RegClass"),
}
}
}
// Sort registers for deterministic code output. We can do an unstable sort because the
// registers will be unique (there are no dups).
int_saves.sort_unstable_by_key(|r| r.to_reg().get_index());
vec_saves.sort_unstable_by_key(|r| r.to_reg().get_index());
(int_saves, vec_saves)
}
fn is_reg_clobbered_by_call(call_conv_of_callee: isa::CallConv, r: RealReg) -> bool {
if call_conv_of_callee.extends_baldrdash() {
match r.get_class() {
RegClass::I64 => {
let enc = r.get_hw_encoding();
if !BALDRDASH_JIT_CALLEE_SAVED_GPR[enc] {
return true;
}
// Otherwise, fall through to preserve native's ABI caller-saved.
}
RegClass::V128 => {
let enc = r.get_hw_encoding();
if !BALDRDASH_JIT_CALLEE_SAVED_FPU[enc] {
return true;
}
// Otherwise, fall through to preserve native's ABI caller-saved.
}
_ => unimplemented!("baldrdash callee saved on non-i64 reg classes"),
};
}
match r.get_class() {
RegClass::I64 => {
// x0 - x17 inclusive are caller-saves.
r.get_hw_encoding() <= 17
}
RegClass::V128 => {
// v0 - v7 inclusive and v16 - v31 inclusive are caller-saves. The
// upper 64 bits of v8 - v15 inclusive are also caller-saves.
// However, because we cannot currently represent partial registers
// to regalloc.rs, we indicate here that every vector register is
// caller-save. Because this function is used at *callsites*,
// approximating in this direction (save more than necessary) is
// conservative and thus safe.
//
// Note that we set the 'not included in clobber set' flag in the
// regalloc.rs API when a call instruction's callee has the same ABI
// as the caller (the current function body); this is safe (anything
// clobbered by callee can be clobbered by caller as well) and
// avoids unnecessary saves of v8-v15 in the prologue even though we
// include them as defs here.
true
}
_ => panic!("Unexpected RegClass"),
}
}