Alex Crichton 285bc5ce24 Implement variant translation in fused adapters (#4534)
* Implement variant translation in fused adapters

This commit implements the most general case of variants for fused
adapter trampolines. Additionally a number of other primitive types are
filled out here to assist with testing variants. The implementation
internally was relatively straightforward given the shape of variants,
but there's room for future optimization as necessary especially around
converting locals to various types.

This commit also introduces a "one off" fuzzer for adapters to ensure
that the generated adapter is valid. I hope to extend this fuzz
generator as more types are implemented to assist in various corner
cases that might arise. For now the fuzzer simply tests that the output
wasm module is valid, not that it actually executes correctly. I hope to
integrate with a fuzzer along the lines of #4307 one day to test the
run-time-correctness of the generated adapters as well, at which point
this fuzzer would become obsolete.

Finally this commit also fixes an issue with `u8` translation where
upper bits weren't zero'd out and were passed raw across modules.
Instead smaller-than-32 types now all mask out their upper bits and do
sign-extension as appropriate for unsigned/signed variants.

* Fuzz memory64 in the new trampoline fuzzer

Currently memory64 isn't supported elsewhere in the component model
implementation of Wasmtime but the trampoline compiler seems as good a
place as any to ensure that it at least works in isolation. This plumbs
through fuzz input into a `memory64` boolean which gets fed into
compilation. Some miscellaneous bugs were fixed as a result to ensure
that memory64 trampolines all validate correctly.

* Tweak manifest for doc build
2022-07-27 09:14:43 -05:00
2022-07-25 20:21:14 +00:00
2022-07-26 09:40:12 -07:00
2022-07-25 22:01:02 +00:00
2020-02-28 09:16:05 -08:00
2022-05-31 08:44:44 -07:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat supported rustc stable Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS with a small install script:

curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime's runtime is also optimized for cases such as efficient instantiation, low-overhead transitions between the embedder and wasm, and scalability of concurrent instances.

  • Secure. Wasmtime's development is strongly focused on the correctness of its implementation with 24/7 fuzzing donated by Google's OSS Fuzz, leveraging Rust's API and runtime safety guarantees, careful design of features and APIs through an RFC process, a security policy in place for when things go wrong, and a release policy for patching older versions as well. We follow best practices for defense-in-depth and known protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.

  • Configurable. Wastime supports a rich set of APIs and build time configuration to provide many options such as further means of restricting WebAssembly beyond its basic guarantees such as its CPU and Memory consumption. Wasmtime also runs in tiny environments all the way up to massive servers with many concurrent instances.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%