* cranelift: Add stack support to the interpreter We also change the approach for heap loads and stores. Previously we would use the offset as the address to the heap. However, this approach does not allow using the load/store instructions to read/write from both the heap and the stack. This commit changes the addressing mechanism of the interpreter. We now return the real addresses from the addressing instructions (stack_addr/heap_addr), and instead check if the address passed into the load/store instructions points to an area in the heap or the stack. * cranelift: Add virtual addresses to cranelift interpreter Adds a Virtual Addressing scheme that was discussed as a better alternative to returning the real addresses. The virtual addresses are split into 4 regions (stack, heap, tables and global values), and the address itself is composed of an `entry` field and an `offset` field. In general the `entry` field corresponds to the instance of the resource (e.g. table5 is entry 5) and the `offset` field is a byte offset inside that entry. There is one exception to this which is the stack, where due to only having one stack, the whole address is an offset field. The number of bits in entry vs offset fields is variable with respect to the `region` and the address size (32bits vs 64bits). This is done because with 32 bit addresses we would have to compromise on heap size, or have a small number of global values / tables. With 64 bit addresses we do not have to compromise on this, but we need to support 32 bit addresses. * cranelift: Remove interpreter trap codes * cranelift: Calculate frame_offset when entering or exiting a frame * cranelift: Add safe read/write interface to DataValue * cranelift: DataValue write full 128bit slot for booleans * cranelift: Use DataValue accessors for trampoline.
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS with a small install script:
$ curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.
-
Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders - [C++] - the
wasmtime-cpprepository - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!
It's Wasmtime.