bitmask instructions
The `bitmask.{8x16,16x8,32x4}` instructions do not map neatly to any single
AArch64 SIMD instruction, and instead need a sequence of around ten
instructions. Because of this, this patch is somewhat longer and more complex
than it would be for (eg) x64.
Main changes are:
* the relevant testsuite test (`simd_boolean.wast`) has been enabled on aarch64.
* at the CLIF level, add a new instruction `vhigh_bits`, into which these wasm
instructions are to be translated.
* in the wasm->CLIF translation (code_translator.rs), translate into
`vhigh_bits`. This is straightforward.
* in the CLIF->AArch64 translation (lower_inst.rs), translate `vhigh_bits`
into equivalent sequences of AArch64 instructions. There is a different
sequence for each of the `{8x16, 16x8, 32x4}` variants.
All other changes are AArch64-specific, and add instruction definitions needed
by the previous step:
* Add two new families of AArch64 instructions: `VecShiftImm` (vector shift by
immediate) and `VecExtract` (effectively a double-length vector shift)
* To the existing AArch64 family `VecRRR`, add a `zip1` variant. To the
`VecLanesOp` family add an `addv` variant.
* Add supporting code for the above changes to AArch64 instructions:
- getting the register uses (`aarch64_get_regs`)
- mapping the registers (`aarch64_map_regs`)
- printing instructions
- emitting instructions (`impl MachInstEmit for Inst`). The handling of
`VecShiftImm` is a bit complex.
- emission tests for new instructions and variants.
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS with a small install script:
$ curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.
-
Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!.
It's Wasmtime.